colonial seabird
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 2)

Ethology ◽  
2021 ◽  
Author(s):  
Paolo Becciu ◽  
Letizia Campioni ◽  
Bruno Massa ◽  
Giacomo Dell'Omo
Keyword(s):  

Author(s):  
Anika Immer ◽  
Thomas Merkling ◽  
Olivier Chastel ◽  
Scott A. Hatch ◽  
Etienne Danchin ◽  
...  

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aili Lage Labansen ◽  
Flemming Merkel ◽  
Anders Mosbech

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 482
Author(s):  
Won Young Lee ◽  
Seongseop Park ◽  
Kil Won Kim ◽  
Jeong-Hoon Kim ◽  
Jong-Ku Gal ◽  
...  

Theory predicts that sympatric predators compete for food under conditions of limited resources. Competition would occur even within the same species, between neighboring populations, because of overlapping foraging habits. Thus, neighboring populations of the same species are hypothesized to face strong competition. To test the hypothesis that intra-specific competition is more intense than inter-specific competition owing to a lack of niche partitioning, we estimated the foraging area and diving depths of two colonial seabird species at two neighboring colonies. Using GPS and time-depth recorders, we tracked foraging space use of sympatric breeding Chinstrap and Gentoo penguins at Ardley Island (AI) and Narębski Point (NP) at King George Island, Antarctica. GPS tracks showed that there was a larger overlap in the foraging areas between the two species than within each species. In dive parameters, Gentoo penguins performed deeper and longer dives than Chinstrap penguins at the same colonies. At the colony level, Gentoo penguins from NP undertook deeper and longer dives than those at AI, whereas Chinstrap penguins did not show such intra-specific differences in dives. Stable isotope analysis of δ13C and δ15N isotopes in blood demonstrated both inter- and intra-specific differences. Both species of penguin at AI exhibited higher δ13C and δ15N values than those at NP, and in both locations, Gentoo penguins had higher δ13C and lower δ15N values than Chinstrap penguins. Isotopic niches showed that there were lower inter-specific overlaps than intra-specific overlaps. This suggests that, despite the low intra-specific spatial overlap, diets of conspecifics from different colonies remained more similar, resulting in the higher isotopic niche overlaps. Collectively, our results support the hypothesis that intra-specific competition is higher than inter-specific competition, leading to spatial segregation of the neighboring populations of the same species.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Genovart ◽  
O. Gimenez ◽  
A. Bertolero ◽  
R. Choquet ◽  
D. Oro ◽  
...  

Abstract Social interactions, through influence on behavioural processes, can play an important role in populations’ resilience (i.e. ability to cope with perturbations). However little is known about the effects of perturbations on the strength of social cohesion in wild populations. Long-term associations between individuals may reflect the existence of social cohesion for seizing the evolutionary advantages of social living. We explore the existence of social cohesion and its dynamics under perturbations by analysing long-term social associations, in a colonial seabird, the Audouin’s gull Larus audouinii, living in a site experiencing a shift to a perturbed regime. Our goals were namely (1) to uncover the occurrence of long-term social ties (i.e. associations) between individuals and (2) to examine whether the perturbation regime affected this form of social cohesion. We analysed a dataset of more than 3500 individuals from 25 years of monitoring by means of contingency tables and within the Social Network Analysis framework. We showed that associations between individuals are not only due to philopatry or random gregariousness but that there are social ties between individuals over the years. Furthermore, social cohesion decreased under the perturbation regime. We sustain that perturbations may lead not only to changes in individuals’ behaviour and fitness but also to a change in populations’ social cohesion. The consequences of decreasing social cohesion are still not well understood, but they can be critical for the population dynamics of social species.


2020 ◽  
Vol 246 ◽  
pp. 108550 ◽  
Author(s):  
Reyes Salas ◽  
Wendt Müller ◽  
Harry Vercruijsse ◽  
Luc Lens ◽  
Eric Stienen

Ecosystems ◽  
2020 ◽  
Vol 23 (8) ◽  
pp. 1643-1656 ◽  
Author(s):  
Matthew P. Duda ◽  
John R. Glew ◽  
Neal Michelutti ◽  
Gregory J. Robertson ◽  
William A. Montevecchi ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8129 ◽  
Author(s):  
Cinthia Irigoin-Lovera ◽  
Diana M. Luna ◽  
Diego A. Acosta ◽  
Carlos B. Zavalaga

Background Drones are reliable tools for estimating colonial seabird numbers. Although most research has focused on methods of improving the accuracy of bird counts, few studies have evaluated the impacts of these methods on bird behavior. In this study, we examined the effects of the DJI Phantom 3 drone approach (altitude, horizontal and vertical descent speeds) on changes in the intensity of behavioral response of guano birds: guanay cormorants (Phalacrocorax bougainvilli), Peruvian boobies (Sula variegata) and Peruvian pelicans (Pelecanus thagus). The breeding and non-breeding condition was also evaluated. Methods Eleven locations along the Peruvian coast were visited in 2016–2017. Drone flight tests considered an altitude range from 5 to 80 m from the colony level, a horizontal speed range from 0.5 to 15 m/s, and a vertical descent speed range from 0.5 to 3 m/s. The intensity of the behavioral response of birds was scored and categorized as: 0-no reacting, 1-head pointing to the drone (HP), 2-wing flapping (WF), 3-walking/running (WR) and 4-taking-off/flying (TK). Drone noise at specific altitudes was recorded with a sound meter close to the colony to discriminate visual from auditory effects of the drone. Results In 74% of all test flights (N = 507), guano birds did not react to the presence of the drone, whereas in the remaining flights, birds showed a sign of discomfort: HP (47.7%, N = 130), WF (18.5%), WR (16.9%) and TK (16.9%). For the drone approach tests, only flight altitude had a significant effect in the intensity of the behavioral response of guano birds (intensity behavioral response <2). No birds reacted at drone altitudes above 50 m from the colony. Birds, for all species either in breeding or non-breeding condition, reacted more often at altitudes of 5 and 10 m. Chick-rearing cormorants and pelicans were less sensitive than their non-breeding counterparts in the range of 5–30 m of drone altitude, but boobies reacted similarly irrespective of their condition. At 5 m above the colony, cormorants were more sensitive to the drone presence than the other two species. Horizontal and vertical flights at different speeds had negligible effects (intensity behavioral response <1). At 2 m above the ground, the noise of the cormorant colony was in average 71.34 ± 4.05 dB (N = 420). No significant differences were observed in the drone noise at different flight altitudes because the background noise of the colony was as loud as the drone. Conclusions It is feasible to use the drone DJI Phantom 3 for surveys on the guano islands of Peru. We recommend performing drone flights at altitudes greater than 50 m from guano bird colonies and to select take-off spots far from gulls. Likewise, this study provides a first step to develop guidelines and protocols of drone use for other potential activities on the Peruvian guano islands and headlands such as surveys of other seabirds and pinnipeds, filming and surveillance.


Sign in / Sign up

Export Citation Format

Share Document