progressive hedging algorithm
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2112
Author(s):  
Tianen Huang ◽  
Zhenjie Wu ◽  
Yuantao Wang ◽  
Jian Tang ◽  
Xiang Li ◽  
...  

Pre-dispatch is an important way for distribution networks to cope with typhoon weather, enhance resilience and reduce economic losses. In order to accurately describe the faults and consequences of components’ failure in the distribution network, this paper establishes a pre-dispatch model to cope with typhoon weather based on line failures consequence analysis. First, Monte Carlo simulation is used to sample the typical fault scenarios of vulnerable lines. According to the location of switchgear, the distribution network is partitioned and a block breaker correlation matrix is established. Combined with the line fault status, a fault consequence model of distribution lines related to the pre-dispatching strategy is established. Then, the objective function is given to minimize the sum of the cost of the pre-dispatch operation and the power outage, and then establish a pre-dispatch model for the distribution network. In order to reduce the computational complexity, PH (Progressive Hedging) algorithm is used to solve the model. Finally, the IEEE-69 test system is used to analyze the effectiveness of the method. The results show that the proposed dispatching model can effectively avoid potential risks, reduce system economic losses and improve the resilience of power grids.


Author(s):  
Wenjing Guo ◽  
Bilge Atasoy ◽  
Wouter Beelaerts van Blokland ◽  
Rudy R. Negenborn

AbstractThis paper investigates a dynamic and stochastic shipment matching problem faced by network operators in hinterland synchromodal transportation. We consider a platform that receives contractual and spot shipment requests from shippers, and receives multimodal services from carriers. The platform aims to provide optimal matches between shipment requests and multimodal services within a finite horizon under spot request uncertainty. Due to the capacity limitation of multimodal services, the matching decisions made for current requests will affect the ability to make good matches for future requests. To solve the problem, this paper proposes an anticipatory approach which consists of a rolling horizon framework that handles dynamic events, a sample average approximation method that addresses uncertainties, and a progressive hedging algorithm that generates solutions at each decision epoch. Compared with the greedy approach which is commonly used in practice, the anticipatory approach has total cost savings up to 8.18% under realistic instances. The experimental results highlight the benefits of incorporating stochastic information in dynamic decision making processes of the synchromodal matching system.


Author(s):  
Bismark Singh ◽  
Bernard Knueven

AbstractWe develop a stochastic optimization model for scheduling a hybrid solar-battery storage system. Solar power in excess of the promise can be used to charge the battery, while power short of the promise is met by discharging the battery. We ensure reliable operations by using a joint chance constraint. Models with a few hundred scenarios are relatively tractable; for larger models, we demonstrate how a Lagrangian relaxation scheme provides improved results. To further accelerate the Lagrangian scheme, we embed the progressive hedging algorithm within the subgradient iterations of the Lagrangian relaxation. We investigate several enhancements of the progressive hedging algorithm, and find bundling of scenarios results in the best bounds. Finally, we provide a generalization for how our analysis extends to a microgrid with multiple batteries and photovoltaic generators.


2020 ◽  
Vol 8 (3) ◽  
pp. 656-667
Author(s):  
Zhenguo Mu ◽  
Junfeng Yang

Stochastic programming is an approach for solving optimization problems with uncertainty data whose probability distribution is assumed to be known, and progressive hedging algorithm (PHA) is a well-known decomposition method for solving the underlying model. However, the per iteration computation of PHA could be very costly since it solves a large number of subproblems corresponding to all the scenarios. In this paper,  a stochastic variant of PHA is studied. At each iteration, only a small fraction of the scenarios are selected uniformly at random and the corresponding variable components are updated accordingly, while the variable components corresponding to those not selected scenarios are kept untouch. Therefore, the per iteration cost can be controlled freely to achieve very fast iterations. We show that, though the per iteration cost is reduced significantly, the proposed stochastic PHA converges in an ergodic sense at the same sublinear rate as the original PHA.


2020 ◽  
Vol 37 (04) ◽  
pp. 2040004
Author(s):  
Min Zhang ◽  
Liangshao Hou ◽  
Jie Sun ◽  
Ailing Yan

Stochastic optimization models based on risk-averse measures are of essential importance in financial management and business operations. This paper studies new algorithms for a popular class of these models, namely, the mean-deviation models in multistage decision making under uncertainty. It is argued that these types of problems enjoy a scenario-decomposable structure, which could be utilized in an efficient progressive hedging procedure. In case that linkage constraints arise in reformulations of the original problem, a Lagrange progressive hedging algorithm could be utilized to solve the reformulated problem. Convergence results of the algorithms are obtained based on the recent development of the Lagrangian form of stochastic variational inequalities. Numerical results are provided to show the effectiveness of the proposed algorithms.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 99398-99406
Author(s):  
Ananth M. Palani ◽  
Hongyu Wu ◽  
Medhat M. Morcos

Sign in / Sign up

Export Citation Format

Share Document