linkage disequilibria
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 5)

H-INDEX

25
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Joseph D Matheson ◽  
Joanna Masel

Simple models from the neutral theory of molecular evolution are claimed to be flexible enough to incorporate the complex effects of background selection against linked deleterious mutations. Complexities are collapsed into an "effective" population size that specifies neutral genetic diversity. To achieve this, current background selection theory assumes linkage equilibrium among deleterious variants. Data do not support this assumption, nor do theoretical considerations when the genome-wide deleterious mutation is realistically high. We simulate genomes evolving under background selection, allowing the emergence of linkage disequilibria. With realistically high deleterious mutation rates, neutral diversity is much lower than predicted from previous analytical theory.


Author(s):  
Dengcheng Yang ◽  
Fan Li ◽  
Jing Wang ◽  
Ang Dong ◽  
Rongling Wu

2021 ◽  
Author(s):  
Himani Sachdeva

This paper considers how local adaptation and reproductive isolation between hybridizing populations is influenced by linkage disequilibria (LD) between multiple divergently selected loci in scenarios where both gene flow and genetic drift degrade local adaptation. It shows that the combined effects of multi-locus LD and genetic drift on allele frequencies at selected loci and on heterozygosity at neutral loci are predicted accurately by incorporating (deterministic) effective migration rates into the diffusion approximation (for selected loci) and into the structured coalescent (for neutral loci). Theoretical approximations are tested against individual-based simulations and used to investigate the conditions for the maintenance of local adaptation on an island subject to one-way migration from a differently adapted mainland, and in an infinite-island population with two different habitats under divergent selection. The analysis clarifies the conditions under which LD between sets of locally deleterious alleles allows these to be collectively eliminated despite drift, causing sharper and (under certain conditions) shifted migration thresholds for loss of adaptation. Local adaptation also has counter-intuitive effects on neutral (relative) divergence: FST is highest for a pair of subpopulations belonging to the same (rare) habitat, despite the lack of reproductive isolation between them.


2020 ◽  
Author(s):  
Enikő Szép ◽  
Himani Sachdeva ◽  
Nick Barton

AbstractThis paper analyses the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.


2019 ◽  
Author(s):  
Diala Abu Awad ◽  
Denis Roze

ABSTRACTInbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this paper, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.


2017 ◽  
Author(s):  
Max Shpak ◽  
Yang Ni ◽  
Jie Lu ◽  
Peter Müller

AbstractThe mean pairwise genetic distance among haplotypes is an estimator of the population mutation rate θ and a standard measure of variation in a population. With the advent of next-generation sequencing (NGS) methods, this and other population parameters can be estimated under different modes of sampling. One approach is to sequence individual genomes with high coverage, and to calculate genetic distance over all sample pairs. The second approach, typically used for microbial samples or for tumor cells, is sequencing a large number of pooled genomes with very low individual coverage. With low coverage, pairwise genetic distances are calculated across independently sampled sites rather than across individual genomes. In this study, we show that the variance in genetic distance estimates is reduced with low coverage sampling if the mean pairwise linkage disequilibrium weighted by allele frequencies is positive. Practically, this means that if on average the most frequent alleles over pairs of loci are in positive linkage disequilibrium, low coverage sequencing results in improved estimates of θ, assuming similar per-site read depths. We show that this result holds under the expected distribution of allele frequencies and linkage disequilibria for an infinite sites model at mutation-drift equilibrium. From simulations, we find that the conditions for reduced variance only fail to hold in cases where variant alleles are few and at very low frequency. These results are applied to haplotype frequencies from a lung cancer tumor to compute the weighted linkage disequilibria and the expected error in estimated genetic distance using high versus low coverage.


2017 ◽  
Vol 15 (01) ◽  
pp. 1750001 ◽  
Author(s):  
Bo Liao ◽  
Xiangjun Wang ◽  
Wen Zhu ◽  
Xiong Li ◽  
Lijun Cai ◽  
...  

Numerous approaches have been proposed for selecting an optimal tag single-nucleotide polymorphism (SNP) set. Most of these approaches are based on linkage disequilibrium (LD). Classical LD measures, such as D′ and r2, are frequently used to quantify the relationship between two marker (pairwise) linkage disequilibria. Despite of their successful use in many applications, these measures cannot be used to measure the LD between multiple-marker. These LD measures need information about the frequencies of alleles collected from haplotype dataset. In this study, a cluster algorithm is proposed to cluster SNPs according to multilocus LD measure which is based on information theory. After that, tag SNPs are selected in each cluster optimized by the number of tag SNPs, prediction accuracy and so on. The experimental results show that this new LD measure can be directly applied to genotype dataset collected from the HapMap project, so that it saves the cost of haplotyping. More importantly, the proposed method significantly improves the efficiency and prediction accuracy of tag SNP selection.


2015 ◽  
Vol 73 (1) ◽  
pp. 161-197 ◽  
Author(s):  
Mareike Esser ◽  
Sebastian Probst ◽  
Ellen Baake

2015 ◽  
Author(s):  
Tim Vines ◽  
Anne Dalziel ◽  
Arianne Albert ◽  
Thor Veen ◽  
Patricia Schulte ◽  
...  

Strong ecological selection on a genetic locus can maintain allele frequency differences between populations in different environments, even in the face of hybridization. When alleles at divergent loci come into tight linkage disequilibria, selection acts on them as a unit and can significantly reduce gene flow. For populations interbreeding across a hybrid zone, linkage disequilibria between loci can force clines to share the same slopes and centers. However, strong ecological selection can push clines away from the others, reducing linkage disequilibria and weakening the barrier to gene flow. We looked for this ‘cline uncoupling’ effect in a hybrid zone between stream resident and anadromous sticklebacks at two genes known to be under divergent natural selection (Eda and ATP1a1) and five morphological traits that repeatedly evolve in freshwater stickleback. We used 10 anonymous SNPs to characterize the shape of the zone. We found that the clines at Eda, ATP1a1, and four morphological traits were concordant and coincident, suggesting that direct selection on each is outweighed by the indirect selection generated by linkage disequilibria. Interestingly, the cline for pectoral fin length was much steeper and displaced 200m downstream, and two anonymous SNPs also had steep clines.


Sign in / Sign up

Export Citation Format

Share Document