datura inoxia
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 3)

BioTech ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Savanah Senn ◽  
Kelly Pangell ◽  
Adrianna L. Bowerman

The purpose of this paper is to elucidate the roles that microbes may be playing in the rootzone of the medicinal plant Daturainoxia. We hypothesized that the microbes associated with the Datura rootzone would be significantly different than the similar surrounding fields in composition and function. We also hypothesized that rhizospheric and endophytic microbes would be associated with similar metabolic functions to the plant rootzone they inhabited. The methods employed were microbial barcoding, tests of essential oils against antibiotic resistant bacteria and other soil bacterial isolates, 16S Next Generation Sequencing (NGS) metabarcoding, and Whole Genome Shotgun (WGS) taxonomic and functional analyses. A few of the main bacterial genera of interest that were differentially abundant in the Datura root microbiome were Flavobacterium (p = 0.007), Chitinophaga (p = 0.0007), Pedobacter (p = 6 × 10−5), Bradyhizobium (p = 1 × 10−8), and Paenibacillus (p = 1.46 × 10−6). There was significant evidence that the microbes associated with the Datura rootzone had elevated function related to bacterial chalcone synthase (p = 1.49 × 10−3) and permease genes (p < 0.003). There was some evidence that microbial functions in the Datura rootzone provided precursors to important plant bioactive molecules or were beneficial to plant growth. This is important because these compounds are phyto-protective antioxidants and are precursors to many aromatic bioactive compounds that are relevant to human health. In the context of known interactions, and current results, plants and microbes influence the flavonoid biosynthetic pathways of one other, in terms of the regulation of the phenylpropanoid pathway. This is the first study to focus on the microbial ecology of the Datura rootzone. There are possible biopharmaceutical and agricultural applications of the natural interplay that was discovered during this study of the Datura inoxia rhizosphere.


Author(s):  
Savanah Senn ◽  
Kelly Pangell ◽  
Adrianna L. Bowerman

The purpose of this paper is to elucidate the roles that microbes may be playing in the rootzone of the medicinal plant Datura inoxia. We hypothesized that rhizospheric and endophytic microbes would be found that were capable of performing the same secondary metabolic functions of the plant rootzone they inhabited. We also hypothesized that the microbial functions would be co-operative with and supportive to plant secondary metabolite production, for example, by providing precursors to important plant bioactive molecules. The methods employed were mi-crobial barcoding, tests of essential oils against antibiotic resistant bacteria and other soil bacterial isolates, 16S Next Generation Sequencing (NGS) metabarcoding, and Whole Genome Shotgun (WGS) taxonomic and functional. A few of the main bacterial genera of interest that were dis-covered in the Datura root microbiome were Flavobacterium, Chitinophaga, Pseudomonas, Strepto-myces, Rhizobium, and Bacillus. In the context of known interactions, and current results, plants and microbes influence the flavonoid biosynthetic pathways of one other, in terms of the regulation of the phenylpropanoid pathway. This is important because these compounds are phyto-protective antioxidants and are precursors to many aromatic bioactive compounds that are relevant to human health. There was strong evidence to support the notion that synergistic production of plant de-rived secondary metabolites by microbes occurred, as well as the ability for the compounds to enter plant cells. There are possible biopharmaceutical and agricultural applications of the natural interplay that was discovered during this study of the Datura inoxia rhizosphere.


2021 ◽  
Vol 14 (3) ◽  
pp. 1707-1720
Author(s):  
Ruby George ◽  
Priti Mathur ◽  
Chandni Tandon

Background: Dinoxin B Withanolide was isolated from Datura inoxia and identified with its cytotoxic activity. But its antibacterial properties are not yet evaluated. We have previously reported the broad-spectrum antibacterial property of Dinoxin B Withanolide extracted from D.inoxia on standard strains. Objective: This research has focused to evaluate the efficacy of Dinoxin B Withanolide against infectious Staphylococcus aureus, including resistant strains. Methods: Electrospray Ionization-Mass Spectrometry is used to depict the presence of Dinoxin B withanolide from the chromatographic ethanolic leaf fraction. Antibacterial activity of different concentrations of Dinoxin B(12500-100000 μg/ml) was assessed using the agar diffusion, macro broth dilution, and time-kill assay methods. Docking studies and Drug likeness properties were analyzed. Result: Electrospray Ionization-Mass Spectrometry depicted the presence of Dinoxin B. All the isolates were susceptible to Dinoxin B within the range of 15±0.5mm to 24±0.5mm, and the bacteria were susceptible at a concentration rate of ≤12.5mg/ml. Time-kill assay showed that 25mg/ml of Dinoxin B displayed the highest inhibitory activity after four hours. The MBC values were compatible with the cidal concentration as seen in the time-kill study's growth curve. Computer-aided techniques resulted in a good Docking score towards Quorum-signaling Sar A protein (-7.82)and Penicillin Binding Protein(-6.9). Conclusion: Dinoxin B with its bactericidal properties and significant affinity towards Quorum-signaling Sar A protein and Penicillin Binding Protein can be considered as an effective bioactive compound against Methicillin Resistance Staphylococcus aureus.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Yogita Sharma ◽  
Rachna Bhateria

In the present study, iron nanoparticles have been synthesized using the leaf extract of potential weed Datura inoxia to evaluate their feasibility for methyl orange removal. This method approves that the green synthesis method must be adopted for the more efficient and rapid synthesis of metal nanoparticles. A simple process of bio reduction has been involved, the leaf extract of Datura inoxia used as a precursor for reducing metal iron. The UV- visible spectral analyses for iron nanoparticles have shown a peak at 240 nm wavelength. Spherical shaped iron nanoparticles are formed as shown by transmission electron microscopy. Batch studies were investigated for optimization study of methyl orange removal on selected parameters i.e., pH (1-10), adsorbent dose (0.02-0.14g), initial dye concentration (5-100pm), contact time (15-120 minutes) and temperature (20- 50o C). The result from the present study approves easy and fast dye removal of 98 % with kinetic data following a second order removal rate. The thermodynamics parameters supported the spontaneity with a negative value of ?G i.e., -14.87 kJ mol-1 and exothermic (?H -7.094 kJ mol-1) nature of the reaction. Thus, it can be concluded that the use of Datura inoxia for the phyto production of iron nanoparticles is efficient for various commercial applications in environment sector


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10698
Author(s):  
Vania Jiménez-Lobato ◽  
Juan Núñez-Farfán

Plant mating system determines, to a great extent, the demographic and genetic properties of populations, hence their potential for adaptive evolution. Variation in plant mating system has been documented between phylogenetically related species as well between populations of a species. A common evolutionary transition, from outcrossing to selfing, is likely to occur under environmental spatial variation in the service of pollinators. Here, we studied two phenotypically (in floral traits) and genetically (in neutral molecular markers) differentiated populations of the annual, insect-pollinated, plant Datura inoxia in Mexico, that differ in the service of pollinators (Mapimí and Cañada Moreno). First, we determined the populations’ parameters of phenotypic in herkogamy, outcrossing and selfing rates with microsatellite loci, and assessed between generation (adults and seedlings) inbreeding, and inbreeding depression. Second, we compared the relationships between parameters in each population. Results point strong differences between populations: plants in Mapimí have, on average, approach herkogamy, higher outcrossing rate (tm = 0.68), lower primary selfing rate (r = 0.35), and lower inbreeding at equilibrium (Fe = 0.24) and higher inbreeding depression (δ = 0.25), than the populations of Cañada. Outcrossing seems to be favored in Mapimí while selfing in Cañada. The relationship between r and Fe were negatively associated with herkogamy in Mapimí; here, progenies derived from plants with no herkogamy or reverse herkogamy had higher selfing rate and inbreeding coefficient than plants with approach herkogamy. The difference Fe–F is positively related to primary selfing rate (r) only in Cañada Moreno which suggests inbreeding depression in selfing individuals and then genetic purging. In conclusion, mating system evolution may occur differentially among maternal lineages within populations of Datura inoxia, in which approach herkogamy favors higher outcrossing rates and low levels of inbreeding and inbreeding depression, while no herkogamy or reverse herkogamy lead to the evolution of the “selfing syndrome” following the purge of deleterious alleles despite high inbreeding among individuals.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Bakht Nasir ◽  
Muhammad Waleed Baig ◽  
Muhammad Majid ◽  
Syeda Masooma Ali ◽  
Muhammad Zafar Irshad Khan ◽  
...  

2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Rosemary Matias ◽  
Valtecir Fernandes ◽  
Bianca Obes Corrêa ◽  
Silvia Rahe Pereira ◽  
Ademir Kleber Morbeck Oliveira

The application of chemical pesticides for the control of fungal diseases results in impacts on the environment and human health. The use of vegetal extracts with antifungal properties for the proper management of crops becomes a viable alternative, mainly for organic and family farming. The objective of this study was to carry out the phytochemical evaluation of Datura inoxia, evaluating its antifungal potential against the mycelial growth of Fusarium solani and Sclerotinia sclerotiorum. The extracts, aqueous and ethanolic, obtained from the leaves of the plant collected in areas of the municipality of Campo Grande, Mato Grosso do Sul, were submitted to phytochemical prospecting and quantification of flavonoids and total phenols. It was evaluated its antifungal activity at concentrations of 800, 1200, 1600, 2000, and 2400 μg 100 mL-1. Each concentration was separately incorporated into BDA agar, poured into Petri dishes, and inoculated with the mycelial disc of the fungus. The diameter of the colonies were measured daily. Two solutions were prepared as control, one containing the solvent added to PDA medium (ethanol solution), and another with only PDA medium (without D. inoxia extract, control). In both extracts were found the same diversity of secondary metabolites (nine classes). The ethanolic extract, a solvent of lower polarity than water, was more efficient in the extraction of these constituents. Alkaloids and phenolic compounds were the most frequent compounds (100%). In relation to antifungal activity, the ethanolic extract provided 100% inhibition of mycelial growth of Sclerotinia sclerotitorum in all concentrations, relative to the control. On the other hand, the growth of Fusarium solani was only negatively affected at the highest concentrations of 800 and 1200 μmL-1 100 mL-1. The antifungal potential of Datura inoxia was probably related to the abundance of alkaloids and phenolic compounds in its chemical constitution that negatively effects the development of the vegetative mycelium.


Author(s):  
Cristina Chelu ◽  
◽  
Carmen Varlam ◽  
Gheorghe Titescu ◽  
Gallia Butnaru ◽  
...  

Molecular Diversity of two Ecotypes of Datura inoxia Originating from Western and Eastern Romania. To characterize genomic variation among genotypes, we have performed RAPD analysis using ten random primers. The results yielded 88 bands out of which 39 were polymorphic. The primers US1 and US7 showed 87.71% and 72.72% polymorphism respectively. The least polymorphism was shown by primer US9 (12.50%). The primer US15 did not produce any bands suggesting the absence of matching sequences in the genomic DNA. The dendrogram classified ecotypes into two clusters (A and B); cluster B possess three sub-clusters: B1 - Socodor 2; B2 - Flamura 1 and Flamura 2, and B3 - Flamura 3. Overall, the values of genetic similarity between ecotypes were low pointing out their particular origin and “evolution”.


2020 ◽  
Vol 28 (2) ◽  
pp. 115242 ◽  
Author(s):  
Babu Gajendran ◽  
Prabhu Durai ◽  
Krishnapriya Madhu Varier ◽  
Arulvasu Chinnasamy

Sign in / Sign up

Export Citation Format

Share Document