plant mating
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 6)

H-INDEX

26
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Rianne E Fernandes ◽  
Melissa A Millar ◽  
David J Coates ◽  
Margaret Byrne ◽  
Siegfried L Krauss ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10698
Author(s):  
Vania Jiménez-Lobato ◽  
Juan Núñez-Farfán

Plant mating system determines, to a great extent, the demographic and genetic properties of populations, hence their potential for adaptive evolution. Variation in plant mating system has been documented between phylogenetically related species as well between populations of a species. A common evolutionary transition, from outcrossing to selfing, is likely to occur under environmental spatial variation in the service of pollinators. Here, we studied two phenotypically (in floral traits) and genetically (in neutral molecular markers) differentiated populations of the annual, insect-pollinated, plant Datura inoxia in Mexico, that differ in the service of pollinators (Mapimí and Cañada Moreno). First, we determined the populations’ parameters of phenotypic in herkogamy, outcrossing and selfing rates with microsatellite loci, and assessed between generation (adults and seedlings) inbreeding, and inbreeding depression. Second, we compared the relationships between parameters in each population. Results point strong differences between populations: plants in Mapimí have, on average, approach herkogamy, higher outcrossing rate (tm = 0.68), lower primary selfing rate (r = 0.35), and lower inbreeding at equilibrium (Fe = 0.24) and higher inbreeding depression (δ = 0.25), than the populations of Cañada. Outcrossing seems to be favored in Mapimí while selfing in Cañada. The relationship between r and Fe were negatively associated with herkogamy in Mapimí; here, progenies derived from plants with no herkogamy or reverse herkogamy had higher selfing rate and inbreeding coefficient than plants with approach herkogamy. The difference Fe–F is positively related to primary selfing rate (r) only in Cañada Moreno which suggests inbreeding depression in selfing individuals and then genetic purging. In conclusion, mating system evolution may occur differentially among maternal lineages within populations of Datura inoxia, in which approach herkogamy favors higher outcrossing rates and low levels of inbreeding and inbreeding depression, while no herkogamy or reverse herkogamy lead to the evolution of the “selfing syndrome” following the purge of deleterious alleles despite high inbreeding among individuals.


2021 ◽  
Author(s):  
Felipe Torres‐Vanegas ◽  
Adam S. Hadley ◽  
Urs G. Kormann ◽  
F. Andrew Jones ◽  
Matthew G. Betts ◽  
...  

2020 ◽  
Author(s):  
Nora Villamil ◽  
Karina Boege ◽  
Graham N. Stone

AbstractAnt guards can increase plant fitness by deterring herbivores but may also reduce it by interfering with pollination, hence ant-plant interactions are ideal systems in which to study costs and benefits of mutualisms. While ant impacts on herbivory are well-studied, much less is known about impacts on pollinators and associated consequences for plant mating systems and fitness. We used field experiments to quantify the effect of ant guards on pollinator community composition, frequency and duration of flower visits, and cascading effects on plant mating system and plant fitness in Turnera velutina (Passifloraceae). Although ant patrolling did not affect pollinator community composition or visitation frequency, it decreased pollinator foraging time and flower visit duration. Such behavioural changes resulted in reduced pollen deposition on stigmas, decreasing male fitness whilst increasing outcrossing rates. This study contributes to understanding how non-pollinators, such as these defensive mutualists, can shape plant mating systems.


2020 ◽  
Vol 68 (1) ◽  
pp. 26
Author(s):  
E. L. Eakin-Busher ◽  
P. G. Ladd ◽  
J. B. Fontaine ◽  
R. J. Standish

Plant species conservation relies on their reproductive success and likelihood of population persistence. Knowledge of plant mating systems, particularly the relationship between plants and their pollinators, is fundamental to inform conservation efforts. This knowledge could be critical for prioritising efforts in human-dominated fragmented landscapes such as the world’s biodiversity hotspots, where reproductive success can be compromised due to habitat loss, limited access to pollinators or other factors. Yet, fundamental data on plant mating systems are lacking for many Australian plants. Here we determined the mating systems of native plant species growing in native woodland fragments within Perth’s urban landscape in south-western Australia. We manipulated insect access to flowers and pollen transfer on five locally common native species, then observed floral visitors and examined reproductive success. Hemiandra pungens and Patersonia occidentalis had mixed mating systems with some ability to self-pollinate, whereas Dianella revoluta and Jacksonia sericea were reliant on insects for outcross pollination. The fruits and seeds produced by Tricoryne elatior were too low to draw conclusions about its mating system. The introduced honey bee (Apis mellifera) was the sole visitor to the mixed mating species, whereas native bees visited D. revoluta and J. sericea (one bee species each). Overall, our data suggest that D. revoluta and J. sericea are more vulnerable to fragmentation than H. pungens and P. occidentalis. Although insects contributed significantly to the reproductive output of the two former plant species, our observations suggested low frequency and richness of insect visitors to these urban fragments. More research is required to determine the generality of our findings. A comparative study in larger native woodland fragments would help estimate the effect of fragmentation on insect pollinators and consequences for the insect-reliant plant species.


Author(s):  
Michael R. Whitehead ◽  
Robert Lanfear ◽  
Randall J. Mitchell ◽  
Jeffrey D. Karron

Author(s):  
Alexander Harkness ◽  
Yaniv Brandvain ◽  
Emma Goldberg

2017 ◽  
Vol 22 (5) ◽  
pp. 395-410 ◽  
Author(s):  
Siegfried L. Krauss ◽  
Ryan D. Phillips ◽  
Jeffrey D. Karron ◽  
Steven D. Johnson ◽  
David G. Roberts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document