pareto optimal points
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7746
Author(s):  
Kishan Fuse ◽  
Rakesh Chaudhari ◽  
Jay Vora ◽  
Vivek K. Patel ◽  
Luis Norberto Lopez de Lacalle

Machining of Titanium alloys (Ti6Al4V) becomes more vital due to its essential role in biomedical, aerospace, and many other industries owing to the enhanced engineering properties. In the current study, a Box–Behnken design of the response surface methodology (RSM) was used to investigate the performance of the abrasive water jet machining (AWJM) of Ti6Al4V. For process parameter optimization, a systematic strategy combining RSM and a heat-transfer search (HTS) algorithm was investigated. The nozzle traverse speed (Tv), abrasive mass flow rate (Af), and stand-off distance (Sd) were selected as AWJM variables, whereas the material removal rate (MRR), surface roughness (SR), and kerf taper angle (θ) were considered as output responses. Statistical models were developed for the response, and Analysis of variance (ANOVA) was executed for determining the robustness of responses. The single objective optimization result yielded a maximum MRR of 0.2304 g/min (at Tv of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm), a minimum SR of 2.99 µm, and a minimum θ of 1.72 (both responses at Tv of 150 mm/min, Af of 500 g/min, and Sd of 1.5 mm). A multi-objective HTS algorithm was implemented, and Pareto optimal points were produced. 3D and 2D plots were plotted using Pareto optimal points, which highlighted the non-dominant feasible solutions. The effectiveness of the suggested model was proved in predicting and optimizing the AWJM variables. The surface morphology of the machined surfaces was investigated using the scanning electron microscope. The confirmation test was performed using optimized cutting parameters to validate the results.


2021 ◽  
Vol 59 (5) ◽  
pp. 3302-3328
Author(s):  
Matthias Bolten ◽  
Onur Tanil Doganay ◽  
Hanno Gottschalk ◽  
Kathrin Klamroth

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2271 ◽  
Author(s):  
Stephen Ntiri Asomani ◽  
Jianping Yuan ◽  
Longyan Wang ◽  
Desmond Appiah ◽  
Kofi Asamoah Adu-Poku

Pump-as-turbine (PAT) technology permits two operating states—as a pump or turbine, depending on the demand. Nevertheless, designing the geometrical components to suit these operating states has been an unending design issue, because of the multi-conditions for the PAT technology that must be attained to enhance the hydraulic performance. Also, PAT has been known to have a narrow operating range and operates poorly at off-design conditions, due to the lack of flow control device and poor geometrical designs. Therefore, for the PAT to have a wider operating range and operate effectively at off-design conditions, the geometric parameters need to be optimized. Since it is practically impossible to optimize more than one objective function at the same time, a suitable surrogate model is needed to mimic the objective functions for it to be solvable. In this study, the Latin hypercube sampling method was used to obtain the objective function values, the Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN) and Generalized Regression Neural Network (GRNN) were used as surrogate models to approximate the objective functions in the design space. Then, a suitable surrogate model was chosen for the optimization. The Pareto-optimal solutions were obtained by using the Pareto-based genetic algorithm (PBGA). To evaluate the results of the optimization, three representative Pareto-optimal points were selected and analyzed. Compared to the baseline model, the Pareto-optimal points showed a great improvement in the objective functions. After optimization, the geometry of the impeller was redesigned to suit the operating conditions of PAT. The findings show that the efficiencies of the optimized design variables of PAT were enhanced by 23.7%, 11.5%, and 10.4% at part load, design point, and under overload flow conditions, respectively. Moreover, the results also indicated that the chosen design variables (b2, β2, β1, and z) had a substantial impact on the objective functions, justifying the feasibility of the optimization method employed in this study.


Author(s):  
Hassan AbouEisha ◽  
Talha Amin ◽  
Igor Chikalov ◽  
Shahid Hussain ◽  
Mikhail Moshkov

1994 ◽  
Vol 2 (3) ◽  
pp. 221-248 ◽  
Author(s):  
N. Srinivas ◽  
Kalyanmoy Deb

In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands that the user have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. Since genetic algorithms (GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a number of solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented by Schaffer and has been tried to solve a number of multiobjective problems, the algorithm seems to have bias toward some regions. In this paper, we investigate Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Pareto-optimal points simultaneously. The proof-of-principle results obtained on three problems used by Schaffer and others suggest that the proposed method can be extended to higher dimensional and more difficult multiobjective problems. A number of suggestions for extension and application of the algorithm are also discussed.


Sign in / Sign up

Export Citation Format

Share Document