scholarly journals Multi-Response Optimization of Abrasive Waterjet Machining of Ti6Al4V Using Integrated Approach of Utilized Heat Transfer Search Algorithm and RSM

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7746
Author(s):  
Kishan Fuse ◽  
Rakesh Chaudhari ◽  
Jay Vora ◽  
Vivek K. Patel ◽  
Luis Norberto Lopez de Lacalle

Machining of Titanium alloys (Ti6Al4V) becomes more vital due to its essential role in biomedical, aerospace, and many other industries owing to the enhanced engineering properties. In the current study, a Box–Behnken design of the response surface methodology (RSM) was used to investigate the performance of the abrasive water jet machining (AWJM) of Ti6Al4V. For process parameter optimization, a systematic strategy combining RSM and a heat-transfer search (HTS) algorithm was investigated. The nozzle traverse speed (Tv), abrasive mass flow rate (Af), and stand-off distance (Sd) were selected as AWJM variables, whereas the material removal rate (MRR), surface roughness (SR), and kerf taper angle (θ) were considered as output responses. Statistical models were developed for the response, and Analysis of variance (ANOVA) was executed for determining the robustness of responses. The single objective optimization result yielded a maximum MRR of 0.2304 g/min (at Tv of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm), a minimum SR of 2.99 µm, and a minimum θ of 1.72 (both responses at Tv of 150 mm/min, Af of 500 g/min, and Sd of 1.5 mm). A multi-objective HTS algorithm was implemented, and Pareto optimal points were produced. 3D and 2D plots were plotted using Pareto optimal points, which highlighted the non-dominant feasible solutions. The effectiveness of the suggested model was proved in predicting and optimizing the AWJM variables. The surface morphology of the machined surfaces was investigated using the scanning electron microscope. The confirmation test was performed using optimized cutting parameters to validate the results.

2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.


2020 ◽  
pp. 152808372094296
Author(s):  
D Rajamani ◽  
E Balasubramanian ◽  
G Dilli Babu ◽  
K Ananthakumar

The present investigation focused on abrasive waterjet cutting (AWJC) of natural fibre reinforced nano clay filled polyester composites with the objectives of maximizing material removal rate ( MRR) and minimizing the kerf taper ( KT) and surface roughness ( Ra). The influence of nano clay addition, traverse speed (TS), jet pressure (JP) and stand-off distance (SOD) on the AWJC characteristics of fabricated composite laminates are investigated. The natural fibre reinforced composite (NFRC) laminates are fabricated through hand lay-up technique through varying the wt% of nano clay fillers (0, 1 and 2). The AWJC experiments are planned and rigorous experiments were performed by adopting box-behnken design approach. The relative consequence of process variables on response features and quadratic regression models were assessed through analysis of variance (ANOVA). Further, multiple response optimization is carried out using statistical desirability technique to enhance the cut quality characteristics. The optimal AWJC parameters such as JP of 316.24 MPa, SOD of 2 mm and TS of 304.24 mm/min with 1.15 wt% of nano clay addition are determined. Microstructure of cut surface is examined to ascertain the morphological behaviour of AWJC surfaces with different processing conditions.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1104 ◽  
Author(s):  
Adel T. Abbas ◽  
Neeraj Sharma ◽  
Saqib Anwar ◽  
Monis Luqman ◽  
Italo Tomaz ◽  
...  

Titanium alloys are widely used in various applications including biomedicine, aerospace, marine, energy, and chemical industries because of their superior characteristics such as high hot strength and hardness, low density, and superior fracture toughness and corrosion resistance. However, there are different challenges when machining titanium alloys because of the high heat generated during cutting processes which adversely affects the product quality and process performance in general. Thus, optimization of the machining conditions while machining such alloys is necessary. In this work, an experimental investigation into the influence of different cutting parameters (i.e., depth of cut, cutting length, feed rate, and cutting speed) on surface roughness (Rz), flank wear (VB), power consumption as well as the material removal rate (MRR) during high-speed turning of Ti-6Al-4V alloy is presented and discussed. In addition, a backpropagation neural network (BPNN) along with the technique for order of preference by similarity to ideal solution (TOPSIS)-fuzzy integrated approach was employed to model and optimize the overall cutting performance. It should be stated that the predicted values for all machining outputs demonstrated excellent agreement with the experimental values at the selected optimal solution. In addition, the selected optimal solution did not provide the best performance for each measured output, but it achieved a balance among all studied responses.


2021 ◽  
Author(s):  
Jennifer llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abstract Austenitic stainless steel 304L (AISI304L), of varied thickness, is widely used in the fabrication industry and in many cases, it requires contour machining for achieving intricate profiles. Abrasive water jet machine is a proficient alternative for machining difficult-to-cut, reflective, conductive, and heat-sensitive materials such as austenitic stainless steel with complex geometries. However, due to differences in machining responses for varied material conditions, the abrasive waterjet machine experiences challenges such as kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machine is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving a lower kerf taper angle and higher material removal rate. Experimental results show that all profiles encountered a similar trend of obtaining higher kerf taper angle and material removal rate as traverse speed increased. Analysis of variance revealed that material thickness denotes a more significant impact to kerf taper angle and material removal rate with a contribution within the range of 69%-91% and 62-69% respectively; whereas traverse speed indicates the least contributing factor within the range of 5%-18% in kerf taper angle and 27%-36% for material removal rate.


2014 ◽  
Vol 6 ◽  
pp. 624203 ◽  
Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor ◽  
Massimiliano Annoni

The effects of the main operational machining parameters on the material removal rate (MRR) in abrasive waterjet turning (AWJT) are presented in this paper using a statistical approach. The five most common machining parameters such as water pressure, abrasive mass flow rate, cutting head traverse speed, workpiece rotational speed, and depth of cut have been put into a five-level central composite rotatable experimental design (CCRD). The main effects of parameters and the interaction among them were analyzed by means of the analysis of variance (ANOVA) and the response surfaces for MRR were obtained fitting a second-order polynomial function. It has been found that depth of cut and cutting head traverse speed are the most influential parameters, whereas the rotational speed is insignificant. In addition, the investigations show that interactions between traverse speed and pressure, abrasive mass flow rate and depth of cut, and pressure and depth of cut are significant on MRR. This result advances the AWJT state of the art. A complete model discussion has been reported drawing interesting considerations on the AWJT process characterising phenomena, where parameters interactions play a fundamental role.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1362
Author(s):  
Jennifer Milaor Llanto ◽  
Ana Vafadar ◽  
Muhammad Aamir ◽  
Majid Tolouei-Rad

Abrasive waterjet machining is applied in various industries for contour cutting of heat-sensitive and difficult-to-cut materials like austenitic stainless steel 304L, with the goal of ensuring high surface integrity and efficiency. In alignment with this manufacturing aspiration, experimental analysis and optimization were carried out on abrasive waterjet machining of austenitic stainless steel 304L with the objectives of minimizing surface roughness and maximizing material removal rate. In this machining process, process parameters are critical factors influencing contour cutting performance. Accordingly, Taguchi’s S/N ratio method has been used in this study for the optimization of process parameters. Further in this work, the impacts of input parameters are investigated, including waterjet pressure, abrasive mass flow rate, traverse speed and material thickness on material removal rate and surface roughness. The study reveals that an increasing level of waterjet pressure and abrasive mass flow rate achieved better surface integrity and higher material removal values. The average S/N ratio results indicate an optimum value of waterjet pressure at 300 MPa and abrasive mass flow rate of 500 g/min achieved minimum surface roughness and maximum material removal rate. It was also found that an optimized value of a traverse speed at 90 mm/min generates the lowest surface roughness and 150 mm/min produces the highest rate of material removed. Moreover, analysis of variance in the study showed that material thickness was the most influencing parameter on surface roughness and material removal rate, with a percentage contribution ranging 90.72–97.74% and 65.55–78.17%, respectively.


2021 ◽  
Author(s):  
Qian Wang ◽  
Xiaoliang Jia

Abstract Carbon fiber reinforced polymer (CFRP) composites need to be machined by operations like trimming, reaming and drilling for the dimensional tolerance and final assembly. This paper presents a cutting parameters optimization method for drilling of CFRP composites to improve hole quality and production efficiency. Hole quality indicators including exit delamination and average surface roughness are expressed as functions of cutting parameters based on the regression analysis of experimental data. Multi-objective optimization of cutting parameters for decreasing exit delamination and surface roughness, increasing material removal rate is accomplished with non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). Optimization results are large numbers of Pareto optimal solutions widely distributed in the objective space, the reliability of Pareto optimal solutions is checked with the global convergence and spacing distance. Moreover, posterior analysis is implemented to identify key solutions of better performance from the Pareto optimal solutions to facilitate the decision-making. Results show that the identified key solutions are capable of achieving satisfactory drilling performances with different preferences for exit delamination, surface roughness and material removal rate. This study provides a feasible way to determine the appropriate cutting parameters, with which demands for multiple responses could be satisfied simultaneously in practical machining operations.


2007 ◽  
Vol 339 ◽  
pp. 500-504 ◽  
Author(s):  
Yan Xia Feng ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Rong Guo Hou ◽  
X.Y. Lu

The machining performance of Al2O3 ceramics is studied by abrasive waterjet (AWJ) milling experiment. The machined surface characteristics and the effect of process parameters on machined surface quality are analyzed. The results showed that the nozzle traverse speed and traverse feed have a strong effect on the machined surface quality. The effect of process parameters on material volume removal rate and the milling depth is also researched. The results indicated that the material volume removal rate and the milling depth would be increased at the milling conditions of higher water pressure and bigger standoff distance. However, the milling depth will decrease at the milling conditions of higher traverse speed and higher traverse feed, and the material volume removal rate has a complex variation.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1461 ◽  
Author(s):  
Jay Vora ◽  
Rakesh Chaudhari ◽  
Chintan Patel ◽  
Danil Yurievich Pimenov ◽  
Vivek K. Patel ◽  
...  

In the current study, laser cutting of Ti6Al4V was accomplished using Taguchi’s L9 orthogonal array (OA). Laser power, cutting speed, and gas pressure were selected as input process parameters, whereas surface roughness (SR), kerf width, dross height, and material removal rate (MRR) were considered as output variables. The effects of input variables were analyzed through the analysis of variance (ANOVA), main effect plots, residual plots, and contour plots. A heat transfer search algorithm was used to optimize the parameters for the single objective function including higher MRR, minimum SR, minimum dross, and minimum kerf. A multi-objective heat transfer search algorithm was used to create non-dominant optimal Pareto points, giving unique optimal solutions with the corresponding input parameters. For better understanding and ease of selection of input parameters in industry and by scientists, a Pareto graph (2D and 3D graph) is generated from the Pareto points.


2015 ◽  
Vol 766-767 ◽  
pp. 324-329 ◽  
Author(s):  
S. Thirumalai Kumaran ◽  
Marimuthu Uthayakumar ◽  
P. Mathiyazhagan ◽  
K. Krishna Kumar ◽  
P. Muthu Kumar

In this work, Abrasive Water Jet Machining (AWJM) on aluminum based hybrid composite with Silicon Carbide (SiC) and Boron Carbide (B4C) reinforcement particles are investigated. Two different abrasive grain sizes of 80 mesh and 120 mesh are selected to carry out the experiments. The cutting parameters namely pressure, standoff distance (SOD) and traverse speed are assessed in terms of the kerf angle, Material Removal Rate (MRR) and Surface Roughness (Ra). The result shows that the coarse abrasive particle has a favorable effect on the MRR, while the fine grained abrasive particle produced minimum kerf angle and good surface finish.


Sign in / Sign up

Export Citation Format

Share Document