allele length
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chathurani Ranathunge ◽  
Melody Chimahusky ◽  
Mark E Welch

Microsatellites have long been considered non-functional, neutrally evolving regions of the genome. Recent findings suggest that they can function as drivers of rapid adaptive evolution. Previous work on common sunflower identified 479 transcribed microsatellites where allele length significantly correlates with gene expression (eSTRs) in a stepwise manner. Here, a population genetic approach is used to test whether eSTR allele length variation is under selection. Genotypic variation among and within populations at 13 eSTRs was compared with that at 19 anonymous microsatellites in 672 individuals from 17 natural populations of sunflower from across a cline running from Saskatchewan to Oklahoma. Expected heterozygosity, allelic richness, and allelic diversity were significantly lower at eSTRs, a pattern consistent with higher relative rates of purifying selection. Further, an analysis of variation in microsatellite allele lengths (lnRV), and heterozygosities (lnRH), indicate recent selective sweeps at the eSTRs. Mean microsatellite allele lengths at four eSTRs within populations are significantly correlated with latitude consistent with the predictions of the tuning knob model which predicts stepwise relationships between microsatellite allele length and phenotypes. This finding suggests that shorter or longer alleles at eSTRs may be favored in climatic extremes. Collectively, our results imply that eSTRs are likely under selection and that they may be playing a role in facilitating local adaptation across a well-defined cline in the common sunflower.


2020 ◽  
Vol 29 (15) ◽  
pp. 2496-2507 ◽  
Author(s):  
Fernando Morales ◽  
Melissa Vásquez ◽  
Eyleen Corrales ◽  
Rebeca Vindas-Smith ◽  
Carolina Santamaría-Ulloa ◽  
...  

Abstract In myotonic dystrophy type 1 (DM1), somatic mosaicism of the (CTG)n repeat expansion is age-dependent, tissue-specific and expansion-biased. These features contribute toward variation in disease severity and confound genotype-to-phenotype analyses. To investigate how the (CTG)n repeat expansion changes over time, we collected three longitudinal blood DNA samples separated by 8–15 years and used small pool and single-molecule PCR in 43 DM1 patients. We used the lower boundary of the allele length distribution as the best estimate for the inherited progenitor allele length (ePAL), which is itself the best predictor of disease severity. Although in most patients the lower boundary of the allele length distribution was conserved over time, in many this estimate also increased with age, suggesting samples for research studies and clinical trials should be obtained as early as possible. As expected, the modal allele length increased over time, driven primarily by ePAL, age-at-sampling and the time interval. As expected, small expansions <100 repeats did not expand as rapidly as larger alleles. However, the rate of expansion of very large alleles was not obviously proportionally higher. This may, at least in part, be a result of the allele length-dependent increase in large contractions that we also observed. We also determined that individual-specific variation in the increase of modal allele length over time not accounted for by ePAL, age-at-sampling and time was inversely associated with individual-specific variation in age-at-onset not accounted for by ePAL, further highlighting somatic expansion as a therapeutic target in DM1.


Neurology ◽  
2019 ◽  
Vol 93 (10) ◽  
pp. e995-e1009 ◽  
Author(s):  
Sarah A. Cumming ◽  
Cecilia Jimenez-Moreno ◽  
Kees Okkersen ◽  
Stephan Wenninger ◽  
Ferroudja Daidj ◽  
...  

ObjectiveTo evaluate the role of genetic variation at the DMPK locus on symptomatic diversity in 250 adult, ambulant patients with myotonic dystrophy type 1 (DM1) recruited to the Observational Prolonged Trial in Myotonic Dystrophy Type 1 to Improve Quality of Life—Standards, a Target Identification Collaboration (OPTIMISTIC) clinical trial.MethodsWe used small pool PCR to correct age at sampling biases and estimate the progenitor allele CTG repeat length and somatic mutational dynamics, and AciI digests and repeat primed PCR to test for the presence of variant repeats.ResultsWe confirmed disease severity is driven by progenitor allele length, is further modified by age, and, in some cases, sex, and that patients in whom the CTG repeat expands more rapidly in the soma develop symptoms earlier than predicted. We revealed a key role for variant repeats in reducing disease severity and quantified their role in delaying age at onset by approximately 13.2 years (95% confidence interval 5.7–20.7, 2-tailed t test t = −3.7, p = 0.0019).ConclusionsCareful characterization of the DMPK CTG repeat to define progenitor allele length and presence of variant repeats has increased utility in understanding clinical variability in a trial cohort and provides a genetic route for defining disease-specific outcome measures, and the basis of treatment response and stratification in DM1 trials.


2019 ◽  
Vol 28 (13) ◽  
pp. 2245-2254 ◽  
Author(s):  
Gayle Overend ◽  
Cécilia Légaré ◽  
Jean Mathieu ◽  
Luigi Bouchard ◽  
Cynthia Gagnon ◽  
...  

2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Antonio G. Cordente ◽  
Anthony R. Borneman ◽  
Caroline Bartel ◽  
Dimitra Capone ◽  
Mark Solomon ◽  
...  

ABSTRACTDuring alcoholic fermentation of grape sugars, wine yeasts produce a range of secondary metabolites that play an important role in the aroma profile of wines. In this study, we have explored the ability of a large number of wine yeast strains to modulate wine aroma composition, focusing on the release of the “fruity” thiols 3-mercaptohexan-1-ol (3-MH) and 4-mercapto-4-methylpentan-2-one (4-MMP) from their respective cysteinylated nonvolatile precursors. The role of the yeast geneIRC7in thiol release has been well established, and it has been shown that a 38-bp deletion found in many wine strains cause them to express a truncated version of Irc7p that does not possess cysteine-S-conjugate β-lyase activity. In our data, we find thatIRC7allele length alone does not fully explain the capacity of a strain to release thiols. Screening of a large number of strains coupled with analysis of genomic sequence data allowed us to identify several previously undescribed single-nucleotide polymorphisms (SNPs) inIRC7that, when coupled with allele length, more robustly explain the ability of a particular yeast strain to release thiols from their cysteinylated precursors. We also demonstrate that allelic variation ofIRC7not only affects the release of thiols but modulates the formation of negative volatile sulfur compounds from the amino acid cysteine. The results of this study provide winemakers with an improved understanding of the genetic determinants that affect wine aroma and flavor, which can be used to guide the choice of yeast strains that are fit for purpose.IMPORTANCEVolatile sulfur compounds contribute to wine aromas that may be considered pleasant, such as “tropical,” “passionfruit,” and “guava,” as well as aromas that are considered undesirable, such as “rotten eggs,” “onions,” and “sewer.” During fermentation, wine yeasts release some of these compounds from odorless precursor molecules, a process that is most efficient when performed by yeasts that express active forms of the protein Irc7p. We show that most wine yeasts carry mutations that reduce activity of this protein, affecting the formation of volatile sulfur compounds that impart both pleasant and unpleasant aromas. The results provide winemakers with guidance on the choice of yeasts that can emphasize or deemphasize this particular contribution to wine quality.


2018 ◽  
Author(s):  
Chathurani Ranathunge ◽  
Gregory L. Wheeler ◽  
Melody E. Chimahusky ◽  
Andy D. Perkins ◽  
Sreepriya Pramod ◽  
...  

ABSTRACTMicrosatellites are common in most species. While an adaptive role for these highly mutable regions has been considered, little is known concerning their contribution towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA-Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2379. The percentage of variation in gene expression explained by eSTRs ranged from 1–86% when controlling for population and allele-by-population interaction effects at the 479 eSTRs. Of these, 70.4% are in untranslated regions (UTRs). A Gene Ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis- and trans-regulatory processes. These findings suggest that a substantial number of transcribed microsatellites can influence gene expression.


2017 ◽  
Vol 284 (1869) ◽  
pp. 20171896 ◽  
Author(s):  
Phillip C. Watts ◽  
Eva R. Kallio ◽  
Esa Koskela ◽  
Eija Lonn ◽  
Tapio Mappes ◽  
...  

The loci arginine vasopressin receptor 1a ( avpr1a ) and oxytocin receptor ( oxtr ) have evolutionarily conserved roles in vertebrate social and sexual behaviour. Allelic variation at a microsatellite locus in the 5′ regulatory region of these genes is associated with fitness in the bank vole Myodes glareolus . Given the low frequency of long and short alleles at these microsatellite loci in wild bank voles, we used breeding trials to determine whether selection acts against long and short alleles. Female bank voles with intermediate length avpr1a alleles had the highest probability of breeding, while male voles whose avpr1a alleles were very different in length had reduced probability of breeding. Moreover, there was a significant interaction between male and female oxtr genotypes, where potential breeding pairs with dissimilar length alleles had reduced probability of breeding. These data show how genetic variation at microsatellite loci associated with avpr1a and oxtr is associated with fitness, and highlight complex patterns of selection at these loci. More widely, these data show how stabilizing selection might act on allele length frequency distributions at gene-associated microsatellite loci.


2015 ◽  
Vol 282 (1818) ◽  
pp. 20152125 ◽  
Author(s):  
William Amos ◽  
Danica Kosanović ◽  
Anders Eriksson

Microsatellite mutations identified in pedigrees confirm that most changes involve the gain or loss of single repeats. However, an unexpected pattern is revealed when the resulting data are plotted on standardized scales that range from the shortest to longest allele at a locus. Both mutation rate and mutation bias reveal a strong dependency on allele length relative to other alleles at the same locus. We show that models in which alleles mutate independently cannot explain these patterns. Instead, both mutation probability and direction appear to involve interactions between homologues in heterozygous individuals. Simple models in which the longer homologue in heterozygotes is more likely to mutate and/or biased towards contraction readily capture the observed trends. The exact model remains unclear in all its details but inter-allelic interactions are a vital component, implying a link between demographic history and the mode and tempo of microsatellite evolution.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 115 ◽  
Author(s):  
Mark P Peterson ◽  
Mikus Abolins-Abols ◽  
Jonathan W Atwell ◽  
Rebecca J Rice ◽  
Borja Milá ◽  
...  

Recent studies exploring the molecular genetic basis for migratory variation in animals have identified polymorphisms in two genes (CLOCK and ADCYAP1) that are linked to circadian rhythms and correlate with migratory propensity and phenology among individuals and populations. Results from these initial studies are mixed, however, and additional data are needed to assess the generality and diversity of the molecular mechanisms that regulate the biology of migration. We sequenced CLOCK and ADCYAP1 in 15 populations across the two species of the avian genus Junco, a North American lineage in which multiple recently diverged subspecies and populations range from sedentary to long-distance migrants. We found no consistent associations between allele length and migratory status across the genus for either CLOCK or ADCYAP1. However, within two subspecies groups, populations that migrate longer distances have longer CLOCK alleles on average. Additionally, there was a positive relationship between ADCYAP1 allele length and migratory restlessness (zugunruhe) among individuals within one of two captive populations studied—a result similar to those reported previously within captive blackcaps (Sylvia atricapilla). We conclude that, while both ADCYAP1 and CLOCK may correlate with migratory propensity within or among certain populations or species, previously identified relationships between migratory behavior and sequence variants cannot be easily generalized across taxa.


Sign in / Sign up

Export Citation Format

Share Document