herbivore defense
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Mst Shamira Sultana ◽  
Reginald J. Millwood ◽  
Mitra Mazarei ◽  
C. Neal Stewart

2021 ◽  
Vol 12 ◽  
Author(s):  
Yueqin Zheng ◽  
Xiyong Zhang ◽  
Xin Liu ◽  
Ningning Qin ◽  
Kaifang Xu ◽  
...  

Plant nutrition status is closely associated with plant defense against insect herbivores. However, the way nitrogen supply regulates rice anti-herbivore is not clear. This study investigated the effects of low (LN, 0.3 mM) and high (HN, 3 mM) nitrate levels on rice resistance against the striped stem borer Chilo suppressalis (SSB), one of the major destructive rice pests. Seven-day-old rice seedlings were cultured with different nitrate levels for 30 days and then inoculated with third instars of SSB. LN significantly enhanced rice anti-herbivore defense and lowered the total nitrogen content in the plants, but increased the content of free amino acids after SSB infestation. Additionally, LN significantly increased the accumulation of phenolic acids and flavonoids, especially lignin, resulting in enhanced constitutive defense in SSB-infested plants. SSB feeding led to a rapid accumulation of secondary metabolites. HN application led to the accumulation of metabolites derived from cinnamic acid, p-coumaric acid, p-coumaric CoA, feruloyl CoA, and apigenin, while LN led to the accumulation of metabolites derived from 3-dehydroquinic acid, phenylalanine, acetyl CoA, and aspartic acid. Collectively, our finding suggests that nitrogen deficiency enhances rice anti-herbivore defense via constitutive defense by the accumulation of phenolic acids and flavonoids.


2021 ◽  
Author(s):  
Jordan R. Croy ◽  
Nalleli Carvajal Acosta ◽  
Kailen A. Mooney

Author(s):  
Saumik Basu ◽  
Robert Clark ◽  
Sayanta Bera ◽  
Clare Cateel ◽  
David Crowder

Plants are often attacked by multiple antagonists, and traits of the attacking organisms, and their order of arrival onto hosts, may affect plant defenses. However, few studies have assessed how multiple antagonists, and varying attack order, affect plant defense or nutrition. To address this, we assessed defensive and nutritional responses of Pisum sativum plants after attack by a vector herbivore (Acrythosiphon pisum), a non-vector herbivore (Sitona lineatus), and a pathogen (Pea enation mosaic virus, PEMV). We show PEMV-infectious A. pisum induced several pathogen-specific plant defense signals, but these defenses were inhibited when S. lineatus was present in peas infected with PEMV. In contrast, feeding by S. lineatus induced anti-herbivore defense signals, but these defenses were enhanced by PEMV. Sitonalineatus also increased abundance of plant amino acids, but only when they attacked after PEMV-infectious A. pisum. Our results suggest that diverse communities of biotic antagonists alter defense and nutritional traits of plants through complex pathways that depend on the identity of attackers and their order of arrival onto hosts. Moreover, we show interactions among a group of biotic stressors can vary along a spectrum from antagonism to enhancement/synergism based on the identity and order of attackers, and these interactions are mediated by a multitude of phytohormone pathways.


2021 ◽  
Author(s):  
Saumik Basu ◽  
Robert E. Clark ◽  
Sayanta Bera ◽  
Clare L. Casteel ◽  
David W. Crowder

AbstractPlants are often attacked by multiple antagonists, and traits of the attacking organisms, and their order of arrival onto hosts, may affect plant defenses. However, few studies have assessed how multiple antagonists, and varying attack order, affect plant defense or nutrition. To address this, we assessed defensive and nutritional responses of Pisum sativum plants after attack by a vector herbivore (Acrythosiphon pisum), a non-vector herbivore (Sitona lineatus), and a pathogen (Pea enation mosaic virus, PEMV). We show PEMV-infectious A. pisum induced several pathogen-specific plant defense signals, but these defenses were inhibited when S. lineatus was present in peas infected with PEMV. In contrast, feeding by S. lineatus induced anti-herbivore defense signals, but these defenses were enhanced by PEMV. Sitona lineatus also increased abundance of plant amino acids, but only when they attacked after PEMV-infectious A. pisum. Our results suggest that diverse communities of biotic antagonists alter defense and nutritional traits of plants through complex pathways that depend on the identity of attackers and their order of arrival onto hosts. Moreover, we show interactions among a group of biotic stressors can vary along a spectrum from antagonism to enhancement/synergism based on the identity and order of attackers, and these interactions are mediated by a multitude of phytohormone pathways.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 255-260
Author(s):  
Jiancai Li ◽  
Rayko Halitschke ◽  
Dapeng Li ◽  
Christian Paetz ◽  
Haichao Su ◽  
...  

Many plant specialized metabolites function in herbivore defense, and abrogating particular steps in their biosynthetic pathways frequently causes autotoxicity. However, the molecular mechanisms underlying their defense and autotoxicity remain unclear. Here, we show that silencing two cytochrome P450s involved in diterpene biosynthesis in the wild tobacco Nicotiana attenuata causes severe autotoxicity symptoms that result from the inhibition of sphingolipid biosynthesis by noncontrolled hydroxylated diterpene derivatives. Moreover, the diterpenes’ defensive function is achieved by inhibiting herbivore sphingolipid biosynthesis through postingestive backbone hydroxylation products. Thus, by regulating metabolic modifications, tobacco plants avoid autotoxicity and gain herbivore defense. The postdigestive duet that occurs between plants and their insect herbivores can reflect the plant’s solutions to the “toxic waste dump” problem of using potent chemical defenses.


Chemoecology ◽  
2020 ◽  
Vol 30 (5) ◽  
pp. 233-244
Author(s):  
Xin Zhang ◽  
Wei Ran ◽  
Fengjing Liu ◽  
Xiwang Li ◽  
Wanjun Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document