rapid accumulation
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 71)

H-INDEX

47
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Xiaojing Chi ◽  
Xinhui Zhang ◽  
Shengnan Pan ◽  
Yanying Yu ◽  
Tianli Lin ◽  
...  

The wide transmission and host adaptation of SARS-CoV-2 have led to the rapid accumulation of mutations, posing significant challenges to the effectiveness of vaccines and therapeutic antibodies. Although several neutralizing antibodies were authorized for emergency clinical use, natural antibodies isolated from convalescent patients are vulnerable to SARS-CoV-2 Spike mutations. Here, we describe the screen of a panel of SARS-CoV-2 receptor-binding domain (RBD) targeted nanobodies (Nbs) from a synthetic library and the design of a biparatopic Nb dimer, named Nb1-Nb2, with tight affinity and super wide neutralization breadth against multiple SARS-CoV-2 variants of concern or interest. Deep-mutational scanning experiments identify the potential binding epitopes of the monomeric Nb1 and Nb2 on the RBD and demonstrate that bivalent Nb1-Nb2 has a strong escape resistant feature against more than 60 tested RBD amino acid substitutions. Using pseudovirion-based and trans-complementation SARS-CoV-2 tools, we determine that Nb1-Nb2 broadly neutralizes SARS-CoV-2, including variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Kappa (B.1.617.1) and Mu (B.1.621). Furthermore, a heavy chain antibody is constructed by fusing the human IgG1 Fc to the biparatopic Nb (designated as Nb1-Nb2-Fc) to improve its neutralization potency, yield, stability and potential half-life extension. For the new Omicron variant (B.1.1.529) that harbors unprecedented multiple RBD mutations, Nb1-Nb2-Fc keeps a firm affinity (KD < 1.0*10E-12 M) and neutralizing activity (IC50 = 0.0017 nM). Together, we developed a biparatopic human heavy chain antibody with ultrapotent and broad-spectrum SARS-CoV-2 neutralization activity which highlights the potential clinical applications.


2021 ◽  
Author(s):  
Changshuo Wei ◽  
Ke-Jia Shan ◽  
Weiguang Wang ◽  
Shuya Zhang ◽  
Qing Huan ◽  
...  

The rapid accumulation of mutations in the SARS-CoV-2 Omicron variant that enabled its outbreak raises questions as to whether its proximal origin occurred in humans or another mammalian host. Here, we identified 45 point mutations that Omicron acquired since divergence from the B.1.1 lineage. We found that the Omicron spike protein sequence was subjected to stronger positive selection than that of any reported SARS-CoV-2 variants known to evolve persistently in human hosts, suggesting the possibility of host-jumping. The molecular spectrum (i.e., the relative frequency of the twelve types of base substitutions) of mutations acquired by the progenitor of Omicron was significantly different from the spectrum for viruses that evolved in human patients, but was highly consistent with spectra associated with evolution in a mouse cellular environment. Furthermore, mutations in the Omicron spike protein significantly overlapped with SARS-CoV-2 mutations known to promote adaptation to mouse hosts, particularly through enhanced spike protein binding affinity for the mouse cell entry receptor. Collectively, our results suggest that the progenitor of Omicron jumped from humans to mice, rapidly accumulated mutations conducive to infecting that host, then jumped back into humans, indicating an inter-species evolutionary trajectory for the Omicron outbreak.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3212
Author(s):  
Yushuai Zhang ◽  
Baokun Xu ◽  
Jiangpei Han ◽  
Liangsheng Shi

Soil moisture status has an important effect on the process of denitrification in paddy soils. However, it is unclear how it affects the ferrous iron-involved denitrification. Here, the influence of drying-rewetting cycles on ferrous iron-involved denitrification in paddy soil were studied with batch experiments. The dynamics of nitrate, ammonia, Fe2+, Fe3+ and total organic carbon (TOC), as well as nitrous oxide (N2O) were investigated using the iron-rich paddy soil in Jiangxi province, South China. Results demonstrated that the denitrification rate dropped while ammonia nitrogen content (NH4+-N) showed a rapid accumulation in the drying period. In the rewetting period, organic carbon played two-side roles. Organic carbon and ferrous iron together provided electron donors to denitrification, and organic carbon simultaneously reduced ferric iron under anaerobic environment. There were complex interactions among organic carbon, nitrate and Fe2+/Fe3+ under drying-rewetting cycles. Soil rewetting led to denitrification flush, especially after a moderately long drying period, while excessively frequent drying-rewetting alternation was not favorable to nitrate denitrification.


2021 ◽  
Author(s):  
Ruojia Li ◽  
Jianjun Yang ◽  
Jiewen Hu ◽  
Gangqiang Zhang ◽  
Ping Zhu

Abstract Shorter fashion cycles have led to the rapid accumulation of unwanted and waste textiles. Compared to light-coloured textiles, the dark-coloured ones are more difficult to recycle and reuse, and their incineration and landfilling have negative environmental consequences. A technology that sufficiently decolorizes these textiles without causing major damage to their structure and properties is therefore useful. In this study, a waste cotton fabric containing vinyl sulfone reactive dyes was subjected to chemical treatments with different oxidants and/or reducing agent. The effects of various treatments on the fabric’s coloration and mechanical properties were compared. The two-step treatment using first Na2S2O4 and then H2O2 showed the best performance, achieving a CIE whiteness index of 65.1, 19.3% tensile strength loss, 1.8% weight loss, 93.5% decolouration rate, and a degree of polymerization of 747.7. A mechanism was proposed to explain the synergistic decolorization process.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2950
Author(s):  
Peter Physick-Sheard ◽  
Amanda Avison ◽  
William Sears

Ontario’s Alcohol and Gaming Commission records equine racing fatalities through its Equine Health Program. The present study examined all Thoroughbred fatalities from 2003 to 2015, inclusive, to identify associations. Official records and details of fatalities were combined in multivariable logistic regression modelling of 236,386 race work-events (433 fatalities), and 459,013 workout work-events (252 fatalities). Fatality rates were 2.94/1000 race starts (all fatalities) and 1.96/1000 (breakdowns only) with an overall rate of 2.61% or 26.1 fatalities/1000 horses. Comparison with published reports reveals rates to be high. Musculoskeletal injury was the predominant complaint and there was a high incidence of horses dying suddenly. Liability was high for young horses early in the season with a differential according to sex and whether a male horse was gelded. Horses undertaking repeated workouts had a higher liability and liability was higher in workouts for horses switching from dirt/synthetic to turf racing and for young horses in sprints. Race distance was not significant but high fatality rates in some large field, distance races combined with effects of age and workload identified groups at particular risk. As field size increased, fatality liability increased for early-finishing horses. Findings suggest jockey strategy could be an important factor influencing fatalities. Probability of fatality declined over the study period. Findings indicate that rapid accumulation of workload in animals early in their preparation is likely to be damaging. Fatality fell toward the end of a season and for horses with a long career history of successful performance; however, horses not exhibiting this robustness and staying power represent the population of greatest concern. Associations may be characterised as representing sources of stress, current or cumulative, and identifying at-risk animals on this basis may be as productive as targeting specific, discrete mechanisms suspected to contribute to individual fatalities.


2021 ◽  
Vol 69 ◽  
pp. 97-121
Author(s):  
Jens Martin Hvid ◽  
Frans van Buchem ◽  
Frank Andreasen ◽  
Emma Sheldon ◽  
Ida Lykke Fabricius

The Faxe limestone quarry in eastern Denmark exposes Danian (Lower Paleocene) cool-water carbonate deposits. They constitute remnants of an apparent build-up that covers about 12 km2 today. The Danian deposits at Faxe are conspicuous due to their pronounced thickness of coral limestone relative to the regional carbonate system. In the Faxe quarry, scleractinian corals are uniquely exposed in up to 30 m high mounds. The rapid accumulation of scleractinians combined with induration of the mounds may locally have protected the limestone from Quaternary glacial erosion and created a Danian thickness anomaly at Faxe. The position of Faxe above a local fault-bounded basement high and the extent of coral limestone has been better defined by new mapping. A mapped lithostratigraphic surface in the quarry reveals the large-scale organisation of nested bryozoan mounds on three elongated ridges striking NW–SE. The main scleractinian coral mounds are located above this horizon. Data for reservoir characterisation, mainly of the bryozoan mounds, were collected as photographs of the outcrop, petrophysical and petrographical data from cored boreholes, and as ground-penetrating radar sections. Old boreholes and measured sections were used to reconstruct the build-up, and new nannofossil data allow a discussion of stratigraphy and accumulation rate. The petrophysical data show that common mound-building bryozoan packstone has higher permeability and lower capillary entry pressure than chalk, whereas less commonly occurring grain-dominated packstone and grainstone deposits from local higher-energy sites of the mound complex were found to have reduced amounts of coccolith mud, significantly higher permeability and a higher degree of lithification. Based on biostratigraphic age constraints, correlation of flint – limestone couplets and recog-nised hierarchical patterns, we develop a cyclostratigraphy for the middle Danian and suggest that cyclicity in lithology and petrophysical characteristics of bryozoan limestone are controlled by precession and eccentricity of the orbit of the Earth.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2044
Author(s):  
Ha Thi Thuy Nguyen ◽  
Sudipta Das Bhowmik ◽  
Hao Long ◽  
Yen Cheng ◽  
Sagadevan Mundree ◽  
...  

Proline has been reported to play an important role in helping plants cope with several stresses, including salinity. This study investigates the relationship between proline accumulation and salt tolerance in an accession of Australian wild rice Oryza australiensis Domin using morphological, physiological, and molecular assessments. Seedlings of O. australiensis wild rice accession JC 2304 and two other cultivated rice Oryza sativa L. cultivars, Nipponbare (salt-sensitive), and Pokkali (salt-tolerant), were screened at 150 mM NaCl for 14 days. The results showed that O. australiensis was able to rapidly accumulate free proline and lower osmotic potential at a very early stage of salt stress compared to cultivated rice. The qRT-PCR result revealed that O. australiensis wild rice JC 2304 activated proline synthesis genes OsP5CS1, OsP5CS2, and OsP5CR and depressed the expression of proline degradation gene OsProDH as early as 1 h after exposure to salinity stress. Wild rice O. australiensis and Pokkali maintained their relative water content and cell membrane integrity during exposure to salinity stress, while the salt-sensitive Nipponbare failed to do so. An analysis of the sodium and potassium contents suggested that O. australiensis wild rice JC 2304 adapted to ionic stress caused by salinity by maintaining a low Na+ content and low Na+/K+ ratio in the shoots and roots. This demonstrates that O. australiensis wild rice may use a rapid accumulation of free proline as a strategy to cope with salinity stress.


2021 ◽  
pp. 084653712110288
Author(s):  
Rosalie McDonough ◽  
Johanna Ospel ◽  
Mayank Goyal

Acute stroke is a widespread, debilitating disease. Fortunately, it also has one of the most effective therapeutic options available in medicine, endovascular treatment. Imaging plays a major role in the diagnosis of stroke and aids in appropriate therapy selection. Given the rapid accumulation of evidence for patient subgroups and concurrent broadening of therapeutic options and indications, it is important to recognize the benefits of certain imaging technologies for specific situations. An effective imaging protocol should: 1) be fast, 2) easily implementable, 3) produce reliable results, 4) have few contraindications, and 5) be safe, all with the goal of providing the patient the best chance of achieving a favorable outcome. In the following, we provide a review of the currently available imaging technologies, their advantages and disadvantages, as well as an overview of the future of stroke imaging. Finally, we offer a perspective.


Sign in / Sign up

Export Citation Format

Share Document