autoimmune regulator
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 31)

H-INDEX

36
(FIVE YEARS 2)

2022 ◽  
Vol 8 ◽  
Author(s):  
Felix Sebastian Nettersheim ◽  
Simon Braumann ◽  
Kouji Kobiyama ◽  
Marco Orecchioni ◽  
Melanie Vassallo ◽  
...  

Atherosclerosis is a chronic, lipid-driven disease of medium sized arteries which causes myocardial infarction and stroke. Recently, an adaptive immune response against the plaque-associated autoantigen Apolipoprotein B100 (ApoB), the structural protein component of low-density lipoprotein, has been implicated in atherogenesis. In healthy individuals, CD4+ T cells responding to ApoB mainly comprised regulatory T cells, which confer immune tolerance and atheroprotection. Mice and patients with atherosclerosis harbor increased numbers of proatherogenic ApoB-reactive T-helper cell subsets. Given the lack of therapies targeting proatherogenic immunity, clarification of the underlying mechanisms is of high clinical relevance. T cells develop in the thymus, where strong autoreactive T cells are eliminated in the process of negative selection. Herein, we investigated whether the transcription factor autoimmune regulator (AIRE), which controls expression of numerous tissue-restricted self-antigens in the thymus, is involved in mediating tolerance to ApoB and whether Aire deficiency might contribute to atherogenesis. Mice deficient for Aire were crossbred to apolipoprotein E-deficient mice to obtain atherosclerosis-prone Aire−/−Apoe−/− mice, which were fed a regular chow diet (CD) or western-type diet (WD). CD4+ T cells responding to the ApoB peptide p6 were analyzed by flow cytometry. We demonstrate that Aire deficiency influences neither generation nor activation of ApoB-reactive T cells and has only minor and overall inconsistent impacts on their phenotype. Furthermore, we show that atherosclerotic plaque size is not affected in Aire−/−Apoe−/− compared to Aire+/+Apoe−/−, irrespective of diet and gender. In conclusion, our data suggests that AIRE is not involved in regulating thymic expression of ApoB or atherosclerosis. Alternative mechanisms how ApoB-reactive CD4 T cells are selected in the thymus will have to be investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Doaa HS Attia ◽  
Dalia AH Dorgham ◽  
Ahmed A. El Maghraby ◽  
Marwa Alkaffas ◽  
Mahitab A. Abdel Kawy ◽  
...  

Background. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease. The autoimmune regulator (AIRE) is a master regulator of self-tolerance development. AIRE mutations lead to the development of autoimmune polyglandular syndrome type 1 while AIRE polymorphisms have been linked to organ-specific autoimmunity. The study is aimed at addressing the association between AIRE polymorphisms, rs2075876 (G > A) and rs760426 (A > G), and SLE susceptibility and expression in Egyptian patients. Methods. Ninety-nine patients were included. One hundred and ten, and 123 control subjects were genotyped for rs2075876 and rs760426, respectively. Lupus severity was assessed using the Lupus Severity of Disease Index and Lupus Severity Index (LSI). Systemic Lupus International Collaborating Clinics (SLICC)/American College of Rheumatology (ACR) damage index was considered. Genotyping was done using StepOne Real-Time PCR. Results. AIRE rs760426 GG was more frequent in the patients under the genotype level (14.1% vs. 4.9%, p = 0.032 ) and recessive model (14.1% vs. 4.9%, p = 0.017 , OR = 3.2 (1.2-8.7)). Musculoskeletal involvement and nephritis were associated with AIRE rs2075876 under the dominant (97.9% vs. 80.8%, p = 0.009 , OR = 11 (1.3-89.2)) and recessive models (100% vs. 69.3%, p = 0.032 ), respectively; and both were linked to AIRE rs2075876 at the allelic level: 98.3% vs. 85%, p = 0.005 , OR = 10.1 (1.3-76.6) and 82.8% vs. 68.6, p = 0.041 , OR = 2.2 (1-4.7), respectively. Patients with AIRE rs2075876 A alleles had a higher damage index ( 1 ± 1.3 vs. 0.6 ± 1.1, p = 0.045 ) while the LSI was greater in patients with AIRE rs2075876 (8.5 ± 0.5 vs. 7.8 ± 1.3, p = 0.002 ) and rs760426 (8.6 ± 11 vs. 7.8 ± 1.2, p = 0.031 ) under the recessive models. Conclusion. AIRE rs760426 could share in SLE susceptibility while AIRE rs2075876 could influence the disease expression and burden in Egyptian patients.


2021 ◽  
Author(s):  
Ana Carolina Monteleone-Cassiano ◽  
Janaina A Dernowsek ◽  
Romario S Mascarenhas ◽  
Amanda F Assis ◽  
Dimitrius Pitol ◽  
...  

Besides controlling the expression of peripheral tissue antigens, the autoimmune regulator (AIRE) gene also regulates the expression of adhesion genes in medullary thymic epithelial cells (mTECs), an essential process for mTEC-thymocyte interaction for triggering the negative selection in the thymus. For these processes to occur, it is necessary that the medulla compartment forms an adequate three-dimensional (3D) architecture, preserving the thymic medulla. Previous studies have shown that AIRE knockout (KO) mice have a small and disorganized thymic medulla; however, whether Aire influences the mTEC-mTEC interaction in the maintenance of the 3D structure has been little explored. Considering that AIRE controls cell adhesion genes, we hypothesized that this gene affects 3D mTEC-mTEC interaction. To test this, we constructed an in vitro model system for mTEC spheroid formation, in which cells adhere to each other, establishing a 3D structure. The effect of Aire on mTEC-mTEC adhesion was evaluated by comparing AIRE wild type (AIREWT) versus Aire KO (AIRE-/-) mTECs. Considering the 3D spheroid model evaluated, we reported that the absence of AIRE disorganizes the 3D structure of mTEC spheroids, promotes a differential regulation of mTEC classical surface markers, and modulates genes encoding adhesion and other molecules.


2021 ◽  
Author(s):  
Max J Duarte ◽  
Romario S Mascarenhas ◽  
Amanda F Assis ◽  
Pedro P Tanaka ◽  
Cesar A Speck-Hernandez ◽  
...  

The autoimmune regulator (Aire) gene in medullary thymic epithelial cells (mTECs) encodes the AIRE protein, which interacts with its partners within the nucleus. This Aire complex induces stalled RNA Pol II on chromatin to proceed with transcription elongation of a large set of messenger RNAs and microRNAs. Considering that RNA Pol II also transcribes long noncoding RNAs (lncRNAs), we hypothesized that Aire might be implicated in the upstream control of this RNA species. To test this, we employed a loss-of-function approach in which Aire knockout mTECs were compared to Aire wild-type mTECs for lncRNA transcriptional profiling both in vitro and in vivo model systems. RNA sequencing enables the differential expression profiling of lncRNAs when these cells adhere in vitro to thymocytes or do not adhere to them as a way to test the effect of cell adhesion. Sets of lncRNAs that are unique and that are shared in vitro and in vivo were identified. Among these, we found the Aire-dependent lncRNAs as for example, Platr28, Ifi30, Morrbid, Malat1, and Xist. This finding represents the first evidence that Aire mediates the transcription of lncRNAs in mTECs. Microarray hybridizations enabled us to observe that temporal thymocyte adhesion modulates the expression levels of such lncRNAs as Morrbid, Xist, and Fbxl12o after 36h of adhesion. This finding shows the existence of a synergistic mechanism involving a link between thymocyte adhesion, Aire, and lncRNAs in mTECs that might be important for immune self-representation.


2021 ◽  
Author(s):  
Pedro P Tanaka ◽  
Ernna H Oliveira ◽  
Mayara C Machado ◽  
Max J Duarte ◽  
Amanda F Assis ◽  
...  

Background: The autoimmune regulator (Aire) gene is critical for the appropriate establishment of central immune tolerance. As one of the main controllers of promiscuous gene expression in the thymus, Aire promotes the expression of thousands of downstream tissue-restricted antigen (TRA) genes, cell adhesion genes and transcription factor genes in medullary thymic epithelial cells (mTECs). Despite the increasing knowledge about the role of Aire as an upstream transcriptional controller, little is known about the mechanisms by which this gene could be regulated. Results: Here, we assessed the posttranscriptional control of Aire by miRNAs. The in silico miRNA-mRNA interaction analysis predicted thermodynamically stable hybridization between the 3UTR of Aire mRNA and miR-155, which was confirmed to occur within the cellular milieu through a luciferase reporter assay. This finding enabled us to hypothesize that miR-155 might play a role as an intracellular posttranscriptional regulator of Aire mRNA. To test this hypothesis, we transfected a murine mTEC cell line with a miR-155 mimic in vitro, which reduced the mRNA and protein levels of Aire. Moreover, large-scale transcriptome analysis showed the modulation of 311 downstream mRNAs, which included 58 TRA mRNAs. Moreover, miR-155 mimic-transfected cells exhibited a decrease in their chemotaxis property compared with control thymocytes. Conclusion: Overall, the results indicate that miR-155 may posttranscriptionally control Aire mRNA as well as a crucial process by which mTECs allow migration of thymocytes through chemotaxis.


Author(s):  
Bryce D. Warren ◽  
Soo Hyun Ahn ◽  
Kathryn Brittain ◽  
Manjunatha K. Nanjappa ◽  
Hao Wang ◽  
...  

2021 ◽  
Vol 141 (5) ◽  
pp. S100
Author(s):  
N. Maglakelidze ◽  
T. Gao ◽  
R.P. Feehan ◽  
R. Hobbs

Sign in / Sign up

Export Citation Format

Share Document