volumetric shrinkage strain
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 1030 ◽  
pp. 110-123
Author(s):  
Muttaqa Uba Zango ◽  
Khairul Anuar Kassim ◽  
Abubakar Sadiq Muhammed ◽  
Kamarudin Ahmad ◽  
Jodin Makinda

Exploring the biological process to enhance the engineering properties of soil have received enormous recognition in recent years. Enzymatic induced calcium carbonate precipitation (EICP) is one of the bio-inspired methods of utilizing free urease to precipitates calcite from urea and calcium ions for bettering the geotechnical properties of poor soils. In this research, the EICP technique was used to improve the volumetric shrinkage strain of compacted soil liner. In this work, the residual soil was treated with various concentrations of cementations ranging from 0.25 to 1.0 M, and the soil was subjected to Atterberg limit tests, compaction test using British standard light (BSL) and reduced British standard light (RBSL) and desiccation drying volumetric shrinkage strain test. The study's findings revealed a remarkable improvement in the liquid limit and plasticity index of the treated residual soils compared to natural soil. It was also found that the volumetric shrinkage strain of the treated soil reduces progressively from 5.24% of natural to 1.49% at 1.0 M cementation solution when the soils were prepared at 0% OMC and BSL compaction effort. Based on the consideration of permissible VSS of less than 4%, the best treatment was obtained at 1.0 M for both BSL and RBSL prepared samples. Similarly, the best compaction plane is found in the treated with 1.0 M cementation solution.


Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 733-744 ◽  
Author(s):  
Lin Zhi Lang ◽  
Wiebke Baille ◽  
Snehasis Tripathy ◽  
Tom Schanz

ABSTRACTIn deep geological repositories, compacted bentonites have been proposed for use as barrier materials for isolating nuclear waste. The prevailing thermo-hydro-mechanical boundary conditions in the repositories may affect the swelling capacity and permeability of the compacted bentonites. In this study, the effect of preliminary desiccation on the subsequent hydro-mechanical behaviour (swelling pressure and hydraulic conductivity) of compacted Calcigel bentonite was investigated experimentally at 22°C and 80°C. In the first stage of the test, the compacted specimens were subjected to suction-controlled desiccation at 22°C and 80°C using the vapour-equilibrium technique. After the water content reached equilibrium at a given suction, the axial, radial and volumetric shrinkage strains were measured. Afterwards, constant-volume swelling-pressure tests were performed on the desiccated specimens (second test stage) by saturating the dried specimens with deionized water at 22°C and 80°C. At the end of the swelling-pressure test, the hydraulic conductivities of four saturated specimens were measured at each temperature. The volumetric shrinkage strain of the compacted bentonite during desiccation is controlled by suction instead of temperature. In addition, the preliminary desiccation increases both the swelling pressure and hydraulic conductivity of compacted bentonite, particularly if compacted bentonite undergoes extreme desiccation at an applied suction of >700 MPa.


2016 ◽  
Vol 24 (1) ◽  
pp. 1-5 ◽  
Author(s):  
George Moses ◽  
Oriola F. O. Peter ◽  
Kolawole J. Osinubi

AbstractBlack cotton soil treated with up to 24% metakaolin (MCL) content was prepared by molding water contents of −2, 0, 2, 4 and 6% of optimum moisture content (OMC) and compacted with British Standard Light (BSL) and West African Standard (WAS) or ‘Intermediate’ energies. The specimens were extruded from the compaction molds and allowed to air dry in a laboratory in order to assess the effect of desiccation-induced shrinkage on the compacted mix for use as a hydraulic barrier in a waste containment application. The results recorded show that the volumetric shrinkage strain (VSS) values were large within the first 10 days of drying; the VSS values increased with a higher molding of the water content, relative to the OMC. The VSS generally increased with a higher initial degree of saturation for the two compactive efforts, irrespective of the level of MCL treatment. Generally, the VSS decreased with an increasing MCL content. Only specimens treated with a minimum 20% MCL content and compacted with the WAS energy satisfied the regulatory maximum VSS of 4% for use as a hydraulic barrier.


Sign in / Sign up

Export Citation Format

Share Document