pressure tests
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 42)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yoichi Yoshizu ◽  
Kazuo Nakamura ◽  
Tatsuya Kawata ◽  
Takahiro Fujii ◽  
Shoji Tsutsui

Abstract Curtain grouting for dam foundation treatment is one of the most crucial work items in dam construction to secure the impermeability of the foundation rock. Some decades ago, the Grouting Intensity Number (GIN) Method developed in Europe has been frequently applied to relatively simple geotechnical structures. On the other hand, the Conventional Method, which requires phased mix proportion and water pressure tests through a sequence of the works, is as yet reliable for inhomogeneous geology. This paper presents the development of a modified curtain grouting method and its application to the Nam Ngiep 1 Hydropower Project in Lao PDR, which has an inhomogeneous geology of sedimentary rock with weak layers affected by fold movement. The method has been dubbed as “hybrid” because it garners both the economical superiority of the GIN Method in that it enables the use of a single mix proportion, and the technical superiority of the Conventional Method in that the individual design pressure in each stage is based on water pressure tests.


Author(s):  
Hassan Karampour ◽  
Mahmoud Alrsai ◽  
Hossein Khalilpasha ◽  
Faris Albermani

Abstract A series of physical tests and finite element (FE) analyses are conducted to evaluate the failure of smooth (conventional) and textured (proposed concept) pipes. To do so, hydrostatic pressure tests are performed on aluminium beverage cans (ductile failure) and additively manufactured Ti6Al4V-0406 titanium pipes (brittle failure). Mechanical material properties are obtained from tensile tests of coupon samples. In absence of physical burst pressure tests, FE models are validated against experimental results of external pressure tests and are used to predict the buckle initiation (Pi) and burst pressure (Pb) capacity of the textured pipes with different number of circumferential triangles, N, and base angles, a. Results show that buckle initiation pressures of the textured concept is 2.34 and 1.80 times greater than those of the smooth aluminium cans and titanium pipes, respectively. However, the burst pressure of the textured pipe can only get 3% greater than the smooth pipe. Based on the current results a textured pipe with N=6 and a=30° is the optimum textured design.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2130
Author(s):  
Francesca Rossi ◽  
Giada Magni ◽  
Roberto Colasanti ◽  
Martina Banchelli ◽  
Maurizio Iacoangeli ◽  
...  

Dura mater repair represents a final and crucial step in neurosurgery: an inadequate dural reconstruction determines dreadful consequences that significantly increase morbidity and mortality rates. Different dural substitutes have been used with suboptimal results. To overcome this issue, in previous studies, we proposed a laser-based approach to the bonding of porcine dura mater, evidencing the feasibility of the laser-assisted procedure. In this work, we present the optimization of this approach in ex vivo experiments performed on porcine dura mater. An 810-nm continuous-wave AlGaAs (Aluminium Gallium Arsenide) diode laser was used for welding Indocyanine Green-loaded patches (ICG patches) to the dura. The ICG-loaded patches were fabricated using chitosan, a resistant, pliable and stable in the physiological environment biopolymer; moreover, their absorption peak was very close to the laser emission wavelength. Histology, thermal imaging and leak pressure tests were used to evaluate the bonding effect. We demonstrated that the application of 3 watts (W), pulsed mode (Ton 30 ms, Toff 3.5 ms) laser light induces optimal welding of the ICG patch to the dura mater, ensuring an average fluid leakage pressure of 216 ± 105 mmHg, falling within the range of physiological parameters. This study demonstrated that the thermal effect is limited and spatially confined and that the laser bonding procedure can be used to close the dura mater. Our results showed the effectiveness of this approach and encourage further experiments in in vivo models.


2021 ◽  
Author(s):  
Mohammad Khaja ◽  
Sushil Raturi ◽  
Abhijit Dutta ◽  
Hassan Haddad ◽  
Rajeev Singh ◽  
...  

Abstract A new and enhanced microfine cement system is presented in this paper which can be used in challenging cement squeeze applications. There are numerous cement squeeze jobs conducted during workover operations every year within the State of Kuwait to prevent water influx. A very common challenge encountered during these applications is either low or no injectivity scenarios. Conventional cement slurries at 15.8-lb/gal density have more often than not resulted in failures while performing post job positive and negative pressure tests, even when the pressure tests are repeated multiple times. These failures can often be attributed to the fact that effective squeezing is not possible due to the larger cement particle size across a limited number of perforations due to early bridging of the cement. Similarly, conventional microfine cement systems which have also been used in these applications have had only limited success. To overcome these challenges, an improved and enhanced microfine cement design has been developed which is able to obtain higher compressive strengths at lower slurry densities (e.g. 12.5 to 13.0 lb/gal) versus the 15.8-lb/gal conventional slurries. This microfine cement design can be further modified to be used in high, low, and zero injectivity scenarios. It possesses several unique features including thixotropic, expansion, anti-gas migration, and strength retrogression properties. Initial field trials of the system have been very successful. The application of conventional microfine slurry systems in low injectivity scenarios is relatively common in the industry; however the enhanced microfine slurry design can be utilized in a variety of injectivity scenarios, or even in loss situations across perforations, casing leaks, or across the casing shoe. The new microfine cement slurry design has the potential of avoiding multiple squeeze jobs by achieving successful positive and negative pressure test results in a minimum number of attempts.


2021 ◽  
Author(s):  
A. Ciani ◽  
L. Tay-Wo-Chong ◽  
A. Amato ◽  
E. Bertolotto ◽  
G. Spataro

Abstract Fuel flexibility in gas turbine development has become increasingly important and modern engines need to cope with a broad variety of fuels. The target to operate power plants with hydrogen-based fuels and low emissions will be of paramount importance in a future focusing on electric power decarbonization. Ansaldo Energia AE94.3A engine acquired broad experience with operation of various natural gas and hydrogen fuel blends, starting in 2006 in the Brindisi (Italy) power plant. Based on the exhaustive experience acquired in the field, this paper describes the latest advancements characterizing the operation of the AE94.3A burner with high pressure combustion tests adding hydrogen blends ranging from 0 to 40% in volume. The interpretation of the test results is supported by reactive and non-reactive simulations describing the effects of varying fuel reactivity on the flame structure as well as the impact of fuel / air momentum flux ratio on the fuel / air interaction and fuel distribution in the combustion chamber. As expected, increasing amounts of hydrogen in the fuel are also associated with higher amounts of NOx production, however this effect could be countered by optimization of the fuel staging strategy, based on the mentioned CFD considerations and feedback from high pressure tests.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Yakov Pronozin ◽  
Mikhail Kajgorodov ◽  
Aleksandr Gerber

The existing approaches for reducing the differential settlements of buildings and structures have their own advantages and disadvantages. Lowering of a building or part of it is one of the promising methods to reduce the differential settlements of shallow foundations resting upon weak silt-loam soils. The effect is achieved by drilling-out vertical boreholes in the immediate vicinity of the foundation from the minimal settlements. Method: Russian and foreign scientists have been involved in the development of calculation procedures for horizontal and inclined drilling-out of boreholes. It has been important to determine drilling parameters when using this technology and how soil characteristics and stress state of soils around the borehole influence the reduction of differential settlements. The paper discusses the influence of the strength characteristics of soils on the stress state of the soil massif around the borehole, as well as the influence of the borehole radius on the formed areas of limit state. The analytical solution is based on the well-known ratio used to determine the stress state around the borehole during pressure tests. Tangential and radial stresses are determined from this ratio; next, they are checked according to the condition of the strength law, and thus, the stress state around the borehole becomes evident. Result: The stress state of the soil around the boreholes has been calculated by the given method; it has made it possible to calculate the areas of soil destruction and determine the parameters of boreholes and their geometry depending on the purposes when regulating the settlements of slab foundations. It has been established that drilling behind the foundation contour in relation to drilling in the foundation contour makes it possible to increase the radius of the plastic deformation zone up to two times under the same soil conditions and well geometry.


2021 ◽  
Author(s):  
Looi Lai Kheng ◽  
Martin Provan ◽  
Malik Faisal Abdullah ◽  
Eric Hoak ◽  
Gabe Hoke

Abstract Blowout Preventer (BOP) is mainly used to control well pressure by quick well shut in the event of overflow and well kick to prevent blowout on the rigs during drilling, completion, workover, and plug and abandonment phases of well operations. Regulators, Operators and Drilling contractors have put in place the requirement to test BOP systems as a method of inspection and assurance in this process safety critical steps. During well operations regular BOP pressure testing will need to be conducted to ensure its integrity and functionality as per testing requirement. In most cases BOP pressure testing is conducted online using rig time although it can also be conducted offline in some circumstances. BOP Pressure testing is considered flat time during well operations and the operators’ goal is to minimize flat times for rig time saving thus operating cost reduction. Flat time reduction can be achieved by reducing BOP pressure testing period and improving the efficiency in the entire testing process. As such a digital pressure testing system was deployed to multiple offshore drilling rigs in Malaysia beginning in September 2019 as innovative technological solutions. This paper represents the digital pressure testing system deployment study on both subsea and surface BOP drilling rigs for direct comparison with the process in use of the analog circular charter recorders (CCR) for BOP Pressure Testing. The study has shown an average 22% reduction in test times, improved safety, improved efficiency in recognizing failed tests faster, improved data reliability and repeatability of BOP pressure tests.


2021 ◽  
Vol 9 (3) ◽  
pp. 94-101
Author(s):  
Omer S. M. Hamza ◽  
Magdi M. E. Zumrawi ◽  
Awad E. M. Mohamed

This study investigates the effect of pozzolana and quick lime as stabilizer materials on expansive soil properties. Disturbed soil sample was collected from Al-Qadarif city in east of Sudan. The basic properties, swelling and strength of the soil were measured. The soil shows very weak strength and very high swelling potential. Mineralogical analysis tests were conducted to the soil using XRD tests. The soil contains significant amount of montmorillonite mineral (86%). Laboratory tests were undertaken on soil stabilized with varying percentage of pozzolana only (0, 5, 10, 15, 20, and 30%) and combination of pozzolana with constant content of quick lime (5%). Compaction, California Bearing Ratio (CBR), free swell, swell present and swelling pressure tests were performed on natural and treated soil. The pozzolana was obtained from Jebal Meidob and the lime obtained from local kilns in Kassala. The results showed that the treatment of expansive soil by combination of pozzolana and quick lime reduced soil swelling coupled with significant increase on soil strength. While the use of pozzolana only has marginal effective. It could be concluded that stabilization of expansive soil by pozzolana-lime admixture is successful.  


Sign in / Sign up

Export Citation Format

Share Document