imaging payloads
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 1)

2019 ◽  
Vol 39 (4) ◽  
pp. 635-646 ◽  
Author(s):  
Alyssa M. Flores ◽  
Jianqin Ye ◽  
Kai-Uwe Jarr ◽  
Niloufar Hosseini-Nassab ◽  
Bryan R. Smith ◽  
...  

Nanoparticles promise to advance strategies to treat vascular disease. Since being harnessed by the cancer field to deliver safer and more effective chemotherapeutics, nanoparticles have been translated into applications for cardiovascular disease. Systemic exposure and drug-drug interactions remain a concern for nearly all cardiovascular therapies, including statins, antithrombotic, and thrombolytic agents. Moreover, off-target effects and poor bioavailability have limited the development of completely new approaches to treat vascular disease. Through the rational design of nanoparticles, nano-based delivery systems enable more efficient delivery of a drug to its therapeutic target or even directly to the diseased site, overcoming biological barriers and enhancing a drug’s therapeutic index. In addition, advances in molecular imaging have led to the development of theranostic nanoparticles that may simultaneously act as carriers of both therapeutic and imaging payloads. The following is a summary of nanoparticle therapy for atherosclerosis, thrombosis, and restenosis and an overview of recent major advances in the targeted treatment of vascular disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Yanshun Zhang ◽  
Shuangji Feng ◽  
Zhanqing Wang ◽  
Xiaopeng Xi ◽  
Ming Li

Considering the application requirements of independent imaging payloads design, a novel scheme of separated position and orientation system (POS) is proposed, in which the high-precision inertial sensors of traditional centralized POS fixed on the imaging payloads are mounted on three gimbals of the inertially stabilized platform (ISP), respectively, and make them integrated. Then, the kinematics model of the ISP system is built to transmit the inertial information measured by separated inertial sensors mounted on ISP gimbals and flight body to the imaging payloads, calculating the position and attitude of the imaging payloads to achieve the function of separated POS. Based on the model, a series of simulations indicate that the precision difference between separated system and centralized system is ignorable under the condition of angular motion and variable velocity motion. Besides the effective function equal to traditional centralized system, the separated POS enhances the integration with the ISP. Moreover, it improves the design independence of the imaging payloads significantly.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ming Xu ◽  
Jinlong Wang ◽  
Ang Zhang ◽  
Shengli Liu

Fractionated spacecrafts are of particular interest for pointing-intensive missions because of their ability to decouple physically the satellite bus and some imaging payloads, which possess a lesser lifecycle cost than a comparable monolithic spacecraft. Considering the probabilistic uncertainties during the mission lifecycle, the cost assessment or architecture optimization is essentially a stochastic problem. Thus, this research seeks to quantitatively assess different spacecraft architecture strategies for remote-sensing missions. A dynamical lifecycle simulation and parametric models are developed to evaluate the lifecycle costs, while the mass, propellant usage, and some other constraints on spacecraft are assessed using nonparametric, physics-based computer models. Compared with the traditional Monte Carlo simulation to produce uncertain distributions during the lifecycle, the unscented transformation is employed to reduce the computational overhead, just as it does in improving the extended Kalman filter. Furthermore, the genetic algorithm is applied to optimize the fractionated architecture based on the probabilistic value-centric assessments developed in this paper.


Sign in / Sign up

Export Citation Format

Share Document