block diagonal form
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Piergiulio Tempesta ◽  
Giorgio Tondo

AbstractWe propose a new, infinite class of brackets generalizing the Frölicher–Nijenhuis bracket. This class can be reduced to a family of generalized Nijenhuis torsions recently introduced. In particular, the Haantjes bracket, the first example of our construction, is relevant in the characterization of Haantjes moduli of operators. We also prove that the vanishing of a higher-level Nijenhuis torsion of an operator field is a sufficient condition for the integrability of its eigen-distributions. This result (which does not require any knowledge of the spectral properties of the operator) generalizes the celebrated Haantjes theorem. The same vanishing condition also guarantees that the operator can be written, in a local chart, in a block-diagonal form.


Author(s):  
Katsuhisa Ozaki ◽  
Takeshi Ogita

AbstractThis paper concerns test matrices for numerical linear algebra using an error-free transformation of floating-point arithmetic. For specified eigenvalues given by a user, we propose methods of generating a matrix whose eigenvalues are exactly known based on, for example, Schur or Jordan normal form and a block diagonal form. It is also possible to produce a real matrix with specified complex eigenvalues. Such test matrices with exactly known eigenvalues are useful for numerical algorithms in checking the accuracy of computed results. In particular, exact errors of eigenvalues can be monitored. To generate test matrices, we first propose an error-free transformation for the product of three matrices YSX. We approximate S by ${S^{\prime }}$ S ′ to compute ${YS^{\prime }X}$ Y S ′ X without a rounding error. Next, the error-free transformation is applied to the generation of test matrices with exactly known eigenvalues. Note that the exactly known eigenvalues of the constructed matrix may differ from the anticipated given eigenvalues. Finally, numerical examples are introduced in checking the accuracy of numerical computations for symmetric and unsymmetric eigenvalue problems.


2021 ◽  
Vol 6 (10) ◽  
pp. 10652-10678
Author(s):  
Sung Woo Choi ◽  

<abstract><p>Characteristic equations for the whole class of integral operators arising from arbitrary well-posed two-point boundary value problems of finite beam deflection resting on elastic foundation are obtained in terms of $ 4 \times 4 $ matrices in block-diagonal form with explicit $ 2 \times 2 $ blocks.</p></abstract>


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1590
Author(s):  
Georg Junker

Hamiltonians describing the relativistic quantum dynamics of a particle with an arbitrary but fixed spin are shown to exhibit a supersymmetric structure when the even and odd elements of the Hamiltonian commute. Here, the supercharges transform between energy eigenstates of positive and negative energy. For such supersymmetric Hamiltonians, an exact Foldy–Wouthuysen transformation exists which brings it into a block-diagonal form separating the positive and negative energy subspaces. The relativistic dynamics of a charged particle in a magnetic field are considered for the case of a scalar (spin-zero) boson obeying the Klein–Gordon equation, a Dirac (spin one-half) fermion and a vector (spin-one) boson characterised by the Proca equation. In the latter case, supersymmetry implies for the Landé g-factor g=2.


Author(s):  
Alexander M. Kamachkin ◽  
◽  
Nikolai A. Stepenko ◽  
Gennady M. Chitrov ◽  
◽  
...  

The classical problem of stationary stabilization with respect to the state of a linear stationary control system is investigated. Efficient, easily algorithmic methods for constructing controllers of controlled systems are considered: the method of V. I. Zubov and the method of P. Brunovsky. The most successful modifications are indicated to facilitate the construction of a linear controller. A new modification of the construction of a linear regulator is proposed using the transformation of the matrix of the original system into a block-diagonal form. This modification contains all the advantages of both V. I. Zubov’s method and P. Brunovsky’s method, and allows one to reduce the problem with multidimensional control to the problem of stabilizing a set of independent subsystems with scalar control for each subsystem.


2019 ◽  
Vol 26 (02) ◽  
pp. 1950010
Author(s):  
Takeo Kamizawa

The analysis of an open quantum system can be by far difficult if the dimension of the system Hilbert space is large or infinite. However, in some cases the dynamics on a finite-dimensional Hilbert space can be decomposed into a block-diagonal form, which simplifies the system structure. In this presentation, we will study several criteria for the complete reducibility and, in addition, a computational method for a basis of each simplified component to apply for the analysis of open quantum systems. An important point of these tools is that they are “effective” methods (one can complete the task in a finite number of steps).


2019 ◽  
pp. 1-15 ◽  
Author(s):  
Pavel Alexeevisch Bakhvalov ◽  
Mikhail Dmitriyevich Surnachev

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Jinyi Long ◽  
Jue Wang ◽  
Tianyou Yu

The hybrid brain computer interface (BCI) based on motor imagery (MI) and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to optimize them together by concatenating the features of MI and P300 in a block diagonal form. Then a linear classifier under a dual spectral norm regularizer is applied to the combined features. Under this framework, the hybrid features of MI and P300 can be learned, selected, and combined together directly. Experimental results on the data set of hybrid BCI based on MI and P300 are provided to illustrate competitive performance of the proposed method against other conventional methods. This provides an evidence that the method used here contributes to the discrimination performance of the brain state in hybrid BCI.


Sign in / Sign up

Export Citation Format

Share Document