Radiation hardness of PantherPix hybrid pixel detector

2021 ◽  
Vol 16 (12) ◽  
pp. P12007
Author(s):  
D. Dudas ◽  
V. Kafka ◽  
M. Marcisovsky ◽  
G. Neue ◽  
M. Marcisovska ◽  
...  

Abstract Hybrid pixel detectors (HPD) are nowadays well known and widely used in fundamental research, e.g. in high energy physics experiments. Over the last decade, segmented semiconductor detectors have also found use in medicine. The total doses received by medical radiation detectors often reach a significant level (up to several hundreds of kGy per decade), especially in applications such as transmission portal in-vivo dosimetry. Such doses might affect detector properties. Therefore, it is necessary to evaluate their performance after absorbing a significant radiation dose. PantherPix is a novel 2D hybrid pixel detector which is designed specifically for use in radiation therapy. As was concluded in earlier studies, it is suitable for radiotherapy quality assurance (QA) and portal dosimetry. In this paper, the PantherPix radiation hardness is investigated using a 60Co source. The dependence on dose of the full depletion voltage, leakage current, detector power consumption and detector response are provided. The PantherPix radiation tolerance has been shown to be adequate for common cumulative doses delivered to radiation detectors in radiotherapy over several decades and its performance has been verified for doses up to 3000 kGy.

2004 ◽  
Vol 71 (3-4) ◽  
pp. 709-711
Author(s):  
D. Bisello ◽  
A. Candelori ◽  
P. Giubilato ◽  
A. Kaminski ◽  
A. Litovchenko ◽  
...  

1994 ◽  
Vol 348 ◽  
Author(s):  
E. Auffray ◽  
I. Dafinei ◽  
P. Lecoq ◽  
M. Schneegans

ABSTRACTCerium fluoride offers a reasonable compromise between parameters like the density, the light yield, the scintillation characteristics (particularly the decay time) and the radiation hardness, and is considered today as the best candidate for large electromagnetic calorimeters in future High Energy Physics experiments. Details on the performances of large crystals produced by different manufacturers all over the world and measured by the Crystal Clear collaboration will be shown and the usefulness of a good collaboration between the industry and the users will be highlighted by some examples on the light yield and radiation hardness improvement.


2021 ◽  
Vol 251 ◽  
pp. 03055
Author(s):  
John Blue ◽  
Braden Kronheim ◽  
Michelle Kuchera ◽  
Raghuram Ramanujan

Detector simulation in high energy physics experiments is a key yet computationally expensive step in the event simulation process. There has been much recent interest in using deep generative models as a faster alternative to the full Monte Carlo simulation process in situations in which the utmost accuracy is not necessary. In this work we investigate the use of conditional Wasserstein Generative Adversarial Networks to simulate both hadronization and the detector response to jets. Our model takes the 4-momenta of jets formed from partons post-showering and pre-hadronization as inputs and predicts the 4-momenta of the corresponding reconstructed jet. Our model is trained on fully simulated tt events using the publicly available GEANT-based simulation of the CMS Collaboration. We demonstrate that the model produces accurate conditional reconstructed jet transverse momentum (pT) distributions over a wide range of pT for the input parton jet. Our model takes only a fraction of the time necessary for conventional detector simulation methods, running on a CPU in less than a millisecond per event.


2017 ◽  
Vol 16 (4) ◽  
pp. 461-475 ◽  
Author(s):  
Gourav K. Jain ◽  
Arun Chougule ◽  
Ananth Kaliyamoorthy ◽  
Suresh K. Akula

AbstractBackgroundOptically stimulated luminescence dosimeters (OSLDs) have a number of advantages in radiation dosimetry making them an excellent dosimeter for in vivo dosimetry. The study aimed to study the dosimetric characteristics of a commercial optically stimulated luminescence (OSL) system by Landauer Inc., before using it for routine clinical practice for in vivo dosimetry in radiotherapy. Further, this study also aimed to investigate the cause of variability found in the literature in a few dosimetric parameters of carbon-doped aluminium oxide (Al2O3:C).Materials and methodsThe commercial OSLD system uses Al2O3:C nanoDotTM as an active radiation detector and InLightTM microStar® as a readout assembly. Inter-detector response, energy, dose rate, field size and depth dependency of the detector response were evaluated for all available clinical range of photon beam energies in radiotherapy.ResultsInter-detector variation in OSLD response was found within 3·44%. After single light exposure for the OSL readout, detector reading decreased by 0·29% per reading. The dose linearity was investigated between dose range 50–400 cGy. The dose response curve was found to be linear until 250 cGy, after this dose, the dose response curve was found to be supra-linear in nature. OSLD response was found to be energy independent for Co60 to 10 MV photon energies.ConclusionsThe cause of variability found in the literature for some dosimetric characteristics of Al2O3:C is due to the difference in general geometry, construction of dosimeter, geometric condition of irradiation, phantom material and geometry, beam energy. In addition, the irradiation history of detector used and difference in readout methodologies had varying degree of uncertainties in measurements. However, the large surface area of the detector placed in the phantom with sufficient build-up and backscatter irradiated perpendicularly to incident radiation in Co60 beam is a good method of choice for the calibration of a dosimeter. Understanding the OSLD response with all dosimetric parameters may help us in estimation of accurate dose delivered to patient during radiotherapy treatment.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 376 ◽  
Author(s):  
Luigi Montalto ◽  
Pier Natali ◽  
Lorenzo Scalise ◽  
Nicola Paone ◽  
Fabrizio Davì ◽  
...  

Nowadays, radiation detectors based on scintillating crystals are used in many different fields of science like medicine, aerospace, high-energy physics, and security. The scintillating crystals are the core elements of these devices; by converting high-energy radiation into visible photons, they produce optical signals that can be detected and analyzed. Structural and surface conditions, defects, and residual stress states play a crucial role in their operating performance in terms of light production, transport, and extraction. Industrial production of such crystalline materials is a complex process that requires sensing, in-line and off-line, for material characterization and process control to properly tune the production parameters. Indeed, the scintillators’ quality must be accurately assessed during their manufacture in order to prevent malfunction and failures at each level of the chain, optimizing the production and utilization costs. This paper presents an overview of the techniques used, at various stages, across the crystal production process, to assess the quality and structural condition of anisotropic scintillating crystals. Different inspection techniques (XRD, SEM, EDX, and TEM) and the non-invasive photoelasticity-based methods for residual stress detection, such as laser conoscopy and sphenoscopy, are presented. The use of XRD, SEM, EDX, and TEM analytical methods offers detailed structural and morphological information. Conoscopy and sphenoscopy offer the advantages of fast and non-invasive measurement suitable for the inspection of the whole crystal quality. These techniques, based on different measurement methods and models, provide different information that can be cross-correlated to obtain a complete characterization of the scintillating crystals. Inspection methods will be analyzed and compared to the present state of the art.


2003 ◽  
Vol 50 (4) ◽  
pp. 1121-1128 ◽  
Author(s):  
A. Candelori ◽  
D. Bisello ◽  
R. Rando ◽  
A. Kaminski ◽  
J. Wyss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document