swirled flow
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Vol 12 (2) ◽  
pp. 573
Author(s):  
Daniil Suslov ◽  
Ivan Litvinov ◽  
Evgeny Gorelikov ◽  
Sergey Shtork ◽  
David Wood

This article is devoted to detailed experimental studies of the flow behind the impeller of an air model of a propeller-type microhydroturbine in a wide range of operating parameters. The measurements of two component distributions of averaged velocities and pulsations for conditions from part load to strong overload are conducted. It is shown that the flow at the impeller outlet becomes swirled when the hydraulic turbine operating mode shifts from the optimum one. The character of the behavior of the integral swirl number, which determines the state of the swirled flow, is revealed. Information about the flow peculiarities can be used when adjusting the hydraulic unit mode to optimal conditions and developing recommendations to expand the hydraulic turbine operation control range with preservation of high efficiency. This stage will significantly save time at the stage of equipment design for specific field conditions of water resource.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012160
Author(s):  
D A Suslov ◽  
I V Litvinov ◽  
E U Gorelikov ◽  
S I Shtork

Abstract The paper presents the data of a detailed study of the flow characteristics behind the runner of an air model of a propeller-type micro hydro turbine with varying operating modes from partial load to severe overload. Detailed measurements of the flow field distributions were carried out using an automated system for contactless optical diagnostics (LDA). The obtained data made it possible to link the identified features of the development of the flow structure when changing the operating mode of the installation with the nature of the evolution of the integral swirl number that determines the state of the swirled flow. Eventually, the work results can be used in the elaboration of recommendations for extending the regulation range of the operating regimes of hydraulic microturbines and providing their high efficiency.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012038
Author(s):  
E Yu Shadrin ◽  
I S Anufriev ◽  
S V Alekseenko

Abstract The flow structure in a model of promising four-vortex furnace is investigated using three-dimensional laser Doppler anemometry method (3D-LDA). Using the “minimum total pressure” criterion, a vortex flow structure was visualized: the core looks like a deformed elliptical cylinder. Results has been compared with early PIV experiments and showed good agreement. The mathematical model for full-scale furnace numerical studies can be verified using these data.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012041
Author(s):  
E Yu Shadrin ◽  
I S Anufriev ◽  
S V Alekseenko

Abstract The three-component Laser Doppler Anemometry method (3D-LDA) was used to study the internal aerodynamics of an experimental model of a promising furnace with a four-vortex scheme for burning coal fuel. Distributions of the averaged velocity and velocity fluctuations are obtained. There are no the pronounced peaks in the spectrum of velocity fluctuations, so we can speak about the stability of the investigated flow. The studied model is characterized by a high level of velocity fluctuations, provided for effective mixing of the pulverized coal mixture in the combustion chamber of the furnace.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 630
Author(s):  
Aidar Kadyirov ◽  
Rinat Zaripov ◽  
Julia Karaeva ◽  
Ekaterina Vachagina

A two-dimensional mathematical model for a steady viscoelastic laminar flow in a confusor was developed under the condition of swirled flow imposed at the inlet. Low density polyethylene was considered as a working fluid. Its behavior was described by a two-mode Giesekus model. The proposed mathematical model was tested by comparing it with some special cases presented in the literature. Additionally, we propose a system of equations to find the nonlinear parameters of the multimode Giesekus model (mobility factor) based on experimental measurement. The obtained numerical results showed that in a confusor with the contraction rate of 4:1, an increase in the swirl intensity at Wi < 5.1 affects only the circumferential velocity, while the axial and radial velocities remain constant. The distribution pattern of the first normal stress difference in the confusor is qualitatively similar to the one in a channel with abrupt contraction, i.e., as the viscoelastic fluid flows in the confusor, the value of N1 increases and reaches a maximum at the end of the confusor. Dimensionless damping coefficients of swirl are used to estimate the swirl intensity. The results show that the swirl intensity decreases exponentially.


Author(s):  
Сергей Ильдусович Валеев

Проведен краткий литературный обзор методов для экспериментального исследования гидродинамики в гидроциклонах. Показаны их достоинства и недостатки. A brief literature review of the methods for the experimental study of hydrodynamics in hydrocyclones is carried out. Their advantages and disadvantages are shown.


2019 ◽  
Vol 18 (1) ◽  
pp. 193-205
Author(s):  
Konstantin A.  Shtym ◽  
Evgenij Iu. Dorogov ◽  
Tatiana A. Soloveva ◽  
Yuriy B. Goncharenko

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
A. Degenève ◽  
P. Jourdaine ◽  
C. Mirat ◽  
J. Caudal ◽  
R. Vicquelin ◽  
...  

Impact of the diverging cup angle of a swirling injector on the flow pattern and stabilization of technically premixed flames is investigated both theoretically and experimentally with the help of OH* chemiluminescence, OH laser-induced fluorescence and particle image velocimetry (PIV) measurements. Recirculation enhancement with a lower position of the internal recirculation zone (IRZ) and a flame leading edge protruding further upstream in the swirled flow are observed as the injector nozzle cup angle is increased. A theoretical analysis is carried out to examine whether this could be explained by changes of the swirl level as the diffuser cup angle is varied. It is shown that pressure effects need in this case to be taken into account in the swirl number definition and expressions for changes of the swirl level through a diffuser are derived. It is demonstrated that changes of the swirl level including or not the pressure contribution to the axial momentum flux are not at the origin of the changes observed of the flow and flame patterns in the experiments. The swirl number without the pressure term, designated as pressure-less swirl, is then determined experimentally with laser Doppler velocimetry (LDV) measurements at the injector outlet for a set of diffusers with increasing quarl angles under nonreacting conditions and the values found corroborate the predictions. It is finally shown that the decline of axial velocity and the rise of adverse axial pressure gradient, both due to the cross section area change through the diffuser cup, are the dominant effects that control the leading edge position of the IRZ of the swirled flow. This is used to develop a model for the displacement of the recirculation bubble as the quarl angle varies that shows very good agreement with experiments.


Sign in / Sign up

Export Citation Format

Share Document