strange hadron
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Prabhakar Palni ◽  
Arvind Khuntia ◽  
Paolo Bartalini

AbstractIn this work, the relative Underlying event (UE) transverse multiplicity activity classifier ($$R_\mathrm{{T}}$$ R T ) is used to study the strange and multi-strange hadron production in proton-proton collisions. Our study with $$R_\mathrm{{T}}$$ R T would allow to disentangle these particles, which are originating from the soft and hard QCD processes. We have used the PYTHIA 8 Monte-Carlo (MC) with a different implementation of color reconnection and rope hadronization models to demonstrate the proton-proton collisions data at $$\sqrt{s}~$$ s = 13 TeV. The relative production of strange and multi-strange hadrons are discussed extensively in low and high transverse activity regions. In this contribution, the relative strange hadron production is enhanced with increasing $$R_\mathrm{{T}}$$ R T . This enhancement is significant for the strange baryons as compared to mesons. In addition, the particle ratios as a function of $$R_\mathrm{{T}}~$$ R T confirm the baryon enhancement in new Color Reconnection (newCR), whereas the Rope model confirms the baryon enhancement only with strange quark content. Experimental confirmation of such results will provide more insight into the soft physics in the transverse region, which will be useful to investigate various tunes based on hadronization and color reconnection schemes.


2020 ◽  
Vol 102 (3) ◽  
Author(s):  
J. Adam ◽  
L. Adamczyk ◽  
J. R. Adams ◽  
J. K. Adkins ◽  
G. Agakishiev ◽  
...  

2020 ◽  
Vol 101 (6) ◽  
Author(s):  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
E. Asilar ◽  
...  

2020 ◽  
Vol 101 (9) ◽  
Author(s):  
Purabi Ghosh ◽  
Jajati K. Nayak ◽  
Sushant K. Singh ◽  
Santosh K. Agarwalla

Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
S. P. Adhya ◽  
A. Adler ◽  
...  

Abstract The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($$\left| y\right| < 0.5$$y<0.5) are measured in proton-proton collisions at $$\sqrt{s}$$s = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of $$\mathrm{K}^{0}_{S}$$KS0, $$\Lambda $$Λ, $$\Xi $$Ξ, and $$\Omega $$Ω increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.


2020 ◽  
Vol 44 (1) ◽  
pp. 014101 ◽  
Author(s):  
Jian-Wei Zhang ◽  
Hai-Hong Li ◽  
Feng-Lan Shao ◽  
Jun Song

KnE Energy ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 195
Author(s):  
D Blau ◽  
I Selyuzhenkov ◽  
V Klochkov

Measurements of the directed and elliptic flow of strange and multi-strange hadrons are an important part of the physics program of the Compressed Baryonic Matter experiment (CBM) at the future accelerator complex FAIR in Darmstadt, Germany. We present recent results from the CBM performance studies for measurements of the directed (


Sign in / Sign up

Export Citation Format

Share Document