intrafusal muscle fiber
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 15 ◽  
Author(s):  
Magdalena Gartych ◽  
Hanna Jackowiak ◽  
Dorota Bukowska ◽  
Jan Celichowski

This study sought to investigate the sexual dimorphism of muscle spindles in rat medial gastrocnemius muscle. The muscles were cut transversely into 5–10 and 20 μm thick serial sections and the number, density, and morphometric properties of the muscle spindles were determined. There was no significant difference (p > 0.05) in the number of muscle spindles of male (14.45 ± 2.77) and female (15.00 ± 3.13) rats. Muscle mass was 38.89% higher in males (1.08 vs. 0.66 g in females), making the density of these receptors significantly higher (p < 0.01) in females (approximately one spindle per 51.14 mg muscle mass vs. one per 79.91 mg in males). There were no significant differences between the morphometric properties of intrafusal muscle fibers or muscle spindles in male and female rats (p > 0.05): 5.16 ± 2.43 and 5.37 ± 2.27 μm for male and female intrafusal muscle fiber diameter, respectively; 5.57 ± 2.20 and 5.60 ± 2.16 μm for male and female intrafusal muscle fiber number, respectively; 25.85 ± 10.04 and 25.30 ± 9.96 μm for male and female shorter muscle spindle diameter, respectively; and 48.99 ± 20.73 and 43.97 ± 16.96 μm for male and female longer muscle spindle diameter, respectively. These findings suggest that sexual dimorphism in the muscle spindles of rat medial gastrocnemius is limited to density, which contrasts previous findings reporting differences in extrafusal fibers diameter.


Neuroreport ◽  
2017 ◽  
Vol 28 (10) ◽  
pp. 604-609 ◽  
Author(s):  
So Y. Park ◽  
So Y. Jang ◽  
Yoon K. Shin ◽  
Byeol A. Yoon ◽  
Hye J. Lee ◽  
...  

2012 ◽  
Vol 12 (04) ◽  
pp. 1250080 ◽  
Author(s):  
CHING-CHAO CHAN ◽  
CHOU-CHING K. LIN ◽  
MING-SHAUNG JU

This study develops a method for estimating the angle of a passively stretched ankle joint from electroneurograms (ENGs) based on structural muscle spindle models of the tibial and peroneal nerves. Passive ramp-and-hold and alternating stretches of the ankle joint are performed on an anesthetized rabbit. Two cuff electrodes are employed to measure the ENGs of peroneal and tibial nerves simultaneously. From the two ENG signals and the joint angle trajectory, two intrafusal muscle fiber models are constructed and their inverse models are derived. The results of the two models are combined to generate the final angle estimate. An optimization method, called sequential quadratic programming, is employed to find the model parameters that minimize the squared errors between the ankle angles predicted by the model and the measured ankle angles. The performance of the proposed approach is compared with those of an adaptive neuro-fuzzy inference system and an artificial neural network model. The results reveal that the proposed model has the best performance in estimating the ankle joint angle in large-range movements and the smallest tracing error. The proposed method effectively estimates the passive ankle joint angle using the inverse physiological model of an intrafusal muscle fiber.


2005 ◽  
Vol 169 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Y'vonne Albert ◽  
Jennifer Whitehead ◽  
Laurie Eldredge ◽  
John Carter ◽  
Xiaoguang Gao ◽  
...  

Vertebrate muscle spindle stretch receptors are important for limb position sensation (proprioception) and stretch reflexes. The structurally complex stretch receptor arises from a single myotube, which is transformed into multiple intrafusal muscle fibers by sensory axon–dependent signal transduction that alters gene expression in the contacted myotubes. The sensory-derived signal transduction pathways that specify the fate of myotubes are very poorly understood. The zinc finger transcription factor, early growth response gene 3 (Egr3), is selectively expressed in sensory axon–contacted myotubes, and it is required for normal intrafusal muscle fiber differentiation and spindle development. Here, we show that overexpression of Egr3 in primary myotubes in vitro leads to the expression of a particular repertoire of genes, some of which we demonstrate are also regulated by Egr3 in developing intrafusal muscle fibers within spindles. Thus, our results identify a network of genes that are regulated by Egr3 and are involved in intrafusal muscle fiber differentiation. Moreover, we show that Egr3 mediates myotube fate specification that is induced by sensory innervation because skeletal myotubes that express Egr3 independent of other sensory axon regulation are transformed into muscle fibers with structural and molecular similarities to intrafusal muscle fibers. Hence, Egr3 is a target gene that is regulated by sensory innervation and that mediates gene expression involved in myotube fate specification and intrafusal muscle fiber morphogenesis.


1999 ◽  
Vol 81 (6) ◽  
pp. 2823-2832 ◽  
Author(s):  
Julien Petit ◽  
Robert W. Banks ◽  
Yves Laporte

Testing the classification of static γ axons using different patterns of random stimulation. The possibility of using randomly generated stimulus intervals (with a Poisson distribution) to identify the type(s) of intrafusal fiber activated by the stimulation of single static γ axons was tested in Peroneus tertius muscle spindles of anesthetized cats. Three patterns of random stimulation with different values of mean intervals [20 ± 4.47, 30 ± 8.94, and 40 ± 8.94 (SD) ms] were used. Single static γ axons activating, in single spindles, either the bag2 fiber alone or the chain fibers alone or both types of intrafusal fiber were prepared. Responses of spindle primary endings elicited by the stimulation of γ axons were recorded from Ia fibers in cut dorsal root filaments. Cross-correlograms between stimuli and spikes of the primary ending responses, autocorrelograms, interval histograms of responses, and stimulations were built. The characteristics of cross-correlograms were found to be related not only to the type of intrafusal muscle fibers activated but also to the parameters of the stimulation. Moreover some cross-correlograms with similar characteristics were produced by the activation of different intrafusal muscle fibers. It also was observed that, whatever the type of intrafusal muscle fiber activated, cross-correlograms could exhibit oscillations after an initial peak, provided the extent in frequency of the primary ending response was small; these oscillations arise in part from the autocorrelation of the primary ending responses. Therefore, cross-correlograms obtained during random stimulation of static γ axons cannot be used for unequivocally identifying the type(s) of intrafusal muscle fiber these axons supply.


1994 ◽  
Vol 71 (2) ◽  
pp. 722-732 ◽  
Author(s):  
J. Celichowski ◽  
F. Emonet-Denand ◽  
Y. Laporte ◽  
J. Petit

1. The intrafusal muscle fiber(s) activated in cat peroneus tertius spindles by single static gamma (gamma s) axons were identified by exclusively physiological criteria based on the different contractile properties of chain and bag2 fibers. 2. The identification rested both on the features of primary ending discharges observed during gamma s electrical stimulation at a rate of 30 pulses per second (stimulation at 30/s) and on cross-correlograms constructed during stimulation at 100/s. Three types of primary ending activation could be distinguished. 3. Type F (fast) activations are characterized, at 30/s, by either a 1-to-1 driving or a very irregular increase in firing arising from a level close to the frequency of stimulation and by the presence in cross-correlograms of significant peaks. They are ascribed to chain fibers whose contractions, at 30/s, present large oscillations and, at 100/s, are still incompletely fused. 4. Type S (slow) activations are characterized, at 30/s, by a sustained and generally regular increase in firing and by the absence of significant peaks in cross-correlograms constructed during stimulation at 100/s. They are ascribed to bag2 fibers whose contractions are nearly fused at 30/s and completely fused beyond 60-70/s. 5. Type M (mixed) activations are characterized, at 30/s, by an irregular increase of discharge above a level distinctly higher than the frequency of stimulation and by the presence of significant peaks in cross-correlograms. They are ascribed to the coactivation of chain and bag2 fibers for two reasons: first, they have some features of both type F and type S activations; and second, they are readily reproduced by stimulating together two axons supplying the same spindle, one exerting a type F activation, the other a type S activation. 6. In seven experiments the distribution of 42 single gamma s axons was determined by observing the type of activation they exerted on several spindles (from 3 to 6). Thirty-five axons (83%) were classified "nonspecific" because the type of activation (F, S, or M) varied from one spindle to the other. Seven axons (17%) were classified "specific" because the type of activation was the same in all spindles: either type F for five axons (12%) or type S for two axons (5%). A statistical analysis of the distribution of all activations showed that the proportions of specific axons were not significantly different from those predicted by chance.


Sign in / Sign up

Export Citation Format

Share Document