dynamic aperture
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Yongjun Li ◽  
Kilean Hwang ◽  
Chad Mitchell ◽  
Robert Rainer ◽  
Robert Ryne ◽  
...  
Keyword(s):  

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 26
Author(s):  
Marco Cavallone ◽  
Yolanda Prezado ◽  
Ludovic De Marzi

Proton MiniBeam Radiation Therapy (pMBRT) is a novel strategy that combines the benefits of minibeam radiation therapy with the more precise ballistics of protons to further optimize the dose distribution and reduce radiation side effects. The aim of this study is to investigate possible strategies to couple pMBRT with dipole magnetic fields to generate a converging minibeam pattern and increase the center-to-center distance between minibeams. Magnetic field optimization was performed so as to obtain the same transverse dose profile at the Bragg peak position as in a reference configuration with no magnetic field. Monte Carlo simulations reproducing realistic pencil beam scanning settings were used to compute the dose in a water phantom. We analyzed different minibeam generation techniques, such as the use of a static multislit collimator or a dynamic aperture, and different magnetic field positions, i.e., before or within the water phantom. The best results were obtained using a dynamic aperture coupled with a magnetic field within the water phantom. For a center-to-center distance increase from 4 mm to 6 mm, we obtained an increase of peak-to-valley dose ratio and decrease of valley dose above 50%. The results indicate that magnetic fields can be effectively used to improve the spatial modulation at shallow depth for enhanced healthy tissue sparing.


2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Elias Métral

AbstractAn important number of coherent beam instability mechanisms can be observed in a particle accelerator, depending if the latter is linear or circular, operated at low, medium or high energy, with a small or a huge amount of turns (for circular machines), close to transition energy or not (below or above), with only one bunch or many bunches, with counter-rotating beams (such as in colliders) or not, if the beam is positively or negatively charged, if one is interested in the longitudinal plane or in the transverse plane, in the presence of linear coupling between the transverse planes or not, in the presence of nonlinearities or not, in the presence of noise or not, etc. Building a realistic impedance model of a machine is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics (linear and nonlinear), RF gymnastics, transverse damper, noise, space charge, electron cloud, and beam–beam (in a collider). Better characterising an instability is the first step before trying to find appropriate mitigation measures and push the performance of a particle accelerator, as some mitigation methods are beneficial for some effects and detrimental for some others. For this, an excellent instrumentation is of paramount importance to be able to diagnose if the instability is longitudinal or transverse, single bunch, or coupled bunch, involving only one mode of oscillation or several, and the evolution of the intrabunch motion with intensity is a fundamental observable with high-intensity high-brightness beams. Finally, among the possible mitigation methods of coherent beam instabilities, the ones perturbing the least the single-particle motion (leading to the largest necessary dynamic aperture and beam lifetime) and easiest to implement for day-to-day operation in the machine control room should be preferred.


2021 ◽  
Author(s):  
Yongjun Li ◽  
Kilean Hwang ◽  
Chad Mitcheel ◽  
Robert Rainer ◽  
Robert Ryne ◽  
...  
Keyword(s):  

Author(s):  
Dou Wang ◽  
Yuemei Peng ◽  
Xiaohao Cui ◽  
Daheng Ji ◽  
Yudong Liu ◽  
...  

The CEPC booster needs to provide electron and positron beams to the collider at different energy with required injection efficiency. At Higgs energy, only the on-axis injection from booster to collider can be fulfilled in CDR. With a consideration of keeping the off-axis injection scheme for safety and reliability, a new booster design based on TME lattice is considered to reduce the emittance by three times after CDR. The new booster design has reached an emittance of 1.3 nm at 120 GeV and the DA without errors is even better than CDR. The geometry of new booster is designed carefully in order to share the same tunnel with collider. The design status of CEPC new booster including parameters, optics, dynamic aperture and geometry is discussed in this paper.


Icarus ◽  
2021 ◽  
Vol 355 ◽  
pp. 114168
Author(s):  
Honglei Lin ◽  
J.D. Tarnas ◽  
J.F. Mustard ◽  
Xia Zhang ◽  
Yong Wei ◽  
...  

Information ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 53
Author(s):  
Massimo Giovannozzi ◽  
Ewen Maclean ◽  
Carlo Emilio Montanari ◽  
Gianluca Valentino ◽  
Frederik F. Van der Veken

A Machine Learning approach to scientific problems has been in use in Science and Engineering for decades. High-energy physics provided a natural domain of application of Machine Learning, profiting from these powerful tools for the advanced analysis of data from particle colliders. However, Machine Learning has been applied to Accelerator Physics only recently, with several laboratories worldwide deploying intense efforts in this domain. At CERN, Machine Learning techniques have been applied to beam dynamics studies related to the Large Hadron Collider and its luminosity upgrade, in domains including beam measurements and machine performance optimization. In this paper, the recent applications of Machine Learning to the analyses of numerical simulations of nonlinear beam dynamics are presented and discussed in detail. The key concept of dynamic aperture provides a number of topics that have been selected to probe Machine Learning. Indeed, the research presented here aims to devise efficient algorithms to identify outliers and to improve the quality of the fitted models expressing the time evolution of the dynamic aperture.


Sign in / Sign up

Export Citation Format

Share Document