beam lifetime
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Elias Métral

AbstractAn important number of coherent beam instability mechanisms can be observed in a particle accelerator, depending if the latter is linear or circular, operated at low, medium or high energy, with a small or a huge amount of turns (for circular machines), close to transition energy or not (below or above), with only one bunch or many bunches, with counter-rotating beams (such as in colliders) or not, if the beam is positively or negatively charged, if one is interested in the longitudinal plane or in the transverse plane, in the presence of linear coupling between the transverse planes or not, in the presence of nonlinearities or not, in the presence of noise or not, etc. Building a realistic impedance model of a machine is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics (linear and nonlinear), RF gymnastics, transverse damper, noise, space charge, electron cloud, and beam–beam (in a collider). Better characterising an instability is the first step before trying to find appropriate mitigation measures and push the performance of a particle accelerator, as some mitigation methods are beneficial for some effects and detrimental for some others. For this, an excellent instrumentation is of paramount importance to be able to diagnose if the instability is longitudinal or transverse, single bunch, or coupled bunch, involving only one mode of oscillation or several, and the evolution of the intrabunch motion with intensity is a fundamental observable with high-intensity high-brightness beams. Finally, among the possible mitigation methods of coherent beam instabilities, the ones perturbing the least the single-particle motion (leading to the largest necessary dynamic aperture and beam lifetime) and easiest to implement for day-to-day operation in the machine control room should be preferred.


2021 ◽  
Vol 136 (9) ◽  
Author(s):  
K. Oide ◽  
J. Wenninger

AbstractThe design of FCC-ee is relying on the accumulated experience of $$\mathrm {e^{+}e^{-}}$$ e + e - colliders that have been designed, constructed and operated in the past 40 years. FCC-ee will surpass the 26.7 km long Large Electron Positron collider LEP by a factor 4 in size. Like for LEP the large size is justified by the need to control the synchrotron radiation losses that for both machines reach a few percent per turn. To that end LEP had the first large super-conducting (SC) RF system with around 3.8 GV of accelerating voltage. LEP achieved for the first time very large beam-beam parameters of around 0.08, and it relied on transversely polarized beams to determine accurately the beam energy for the experiments. The DA$$\varPhi $$ Φ NE collider, together with PEP II and KEKB split the two beams into separate vacuum chambers to reach much higher Ampere-level beam currents. To overcome beam-beam lifetime and performance issues DA$$\varPhi $$ Φ NE used for the first time the Crab Waist concept for the interaction region (IR) optics. The B-factories, PEP-II and KEKB have verified the double-ring $$\mathrm {e^{+}e^{-}}$$ e + e - collider with multi-ampere stored currents for over 1000 bunches, small $$\beta ^*$$ β ∗ , top-up injection, and achieved then-highest luminosity. KEKB has applied 22-mrad crossing angle at the IP with crab crossing. Both machines inherited accelerator techniques from their predecessors, PEP and TRISTAN, which was a small-scale LEP. Currently the next generation SuperKEKB collider is starting up. It has already achieved some milestones required for FCC-ee such as small $$\beta ^*$$ β ∗ (0.8 mm) and virtual crab-waist scheme with a large Piwinski angle (>10).


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Marek Grabski ◽  
Eshraq Al-Dmour

The 3 GeV electron storage ring of the MAX IV laboratory is the first storage-ring-based synchrotron radiation facility with the inner surface of almost all the vacuum chambers along its circumference coated with non-evaporable getter (NEG) thin film. The coating provides a low dynamic outgassing rate and pumping of active gases. As the NEG coating was applied on an unprecedented scale, there were doubts concerning the storage ring performance. Fast conditioning of the vacuum system and over five years of reliable accelerator operation have demonstrated that the chosen design proved to be good and does not impose limits on the operation. The vacuum system performance is comparable with or better than that of other similar facilities around the world, where conventional designs were implemented. Observed pressure levels are low, and the electron beam lifetime is long and not limited by residual gas density. A summary of the vacuum performance is presented.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4650
Author(s):  
Jie Wang ◽  
Jing Zhang ◽  
Yong Gao ◽  
Yaocheng Hu ◽  
Zhiming You ◽  
...  

Secondary electron emission (SEE) inhibition and vacuum instability are two important issues in accelerators that may induce multiple effects in accelerators, such as power loss and beam lifetime reduction. In order to mitigate SEE and maintain high vacuum simultaneously, open-cell copper metal foam (OCMF) substrates with Ti-Zr-V-Hf non-evaporable getter (NEG) coatings are first proposed, and the properties of surface morphology, surface chemistry and secondary electron yield (SEY) were analyzed for the first time. According to the experimental results tested at 25 °C, the maximum SEY (δmax) of OCMF before and after Ti-Zr-V-Hf NEG film deposition were 1.25 and 1.22, respectively. The XPS spectra indicated chemical state changes of the metal elements (Ti, Zr, V and Hf) of the Ti-Zr-V-Hf NEG films after heating, suggesting that the NEG films can be activated after heating and used as getter pumps.


2020 ◽  
Vol 15 (1) ◽  
pp. 5-23
Author(s):  
Grigory N. Baranov ◽  
Anton V. Bogomyagkov ◽  
Eugene B. Levichev ◽  
Sergey V. Sinyatkin

We study magnetic lattice and optimize parameters for the fourth generation light source SKIF (Russian acronym of Siberian Circular Photon Source) to be built in Novosibirsk. We consider several lattice cells to achieve both low emittance and large dynamic aperture. The resulting lattice provides the natural emittance of the electron beam of 75 pm for the beam energy of 3 GeV and the orbit circumference of 476 m. Only two families of chromatic sextupoles give the dynamic aperture and energy bandwidth enough for both good beam lifetime and simple effective injection.


2019 ◽  
Vol 27 (4) ◽  
pp. 4445 ◽  
Author(s):  
Kevin M. W. Boyd ◽  
Rafael N. Kleiman

2017 ◽  
Author(s):  
V. Smaluk ◽  
Alexei Blednykh ◽  
Boris Podobedov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document