serine recombinases
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Matthew G Durrant ◽  
Alison Fanton ◽  
Josh Tycko ◽  
Michaela Hinks ◽  
Sita Chandrasekaran ◽  
...  

Recent microbial genome sequencing efforts have revealed a vast reservoir of mobile genetic elements containing integrases that could be useful genome engineering tools. Large serine recombinases (LSRs), such as Bxb1 and PhiC31, are bacteriophage-encoded integrases that can facilitate the insertion of phage DNA into bacterial genomes. However, only a few LSRs have been previously characterized and they have limited efficiency in human cells. Here, we developed a systematic computational discovery workflow that searches across the bacterial tree of life to expand the diversity of known LSRs and their cognate DNA attachment sites by >100-fold. We validated this approach via experimental characterization of LSRs, leading to three classes of LSRs distinguished from one another by their efficiency and specificity. We identify landing pad LSRs that efficiently integrate into native attachment sites in a human cell context, human genome-targeting LSRs with computationally predictable pseudosites, and multi-targeting LSRs that can unidirectionally integrate cargos with similar efficiency and superior specificity to commonly used transposases. LSRs from each category were functionally characterized in human cells, overall achieving up to 7-fold higher plasmid recombination than Bxb1 and genome insertion efficiencies of 40-70% with cargo sizes over 7 kb. Overall, we establish a paradigm for the large-scale discovery of microbial recombinases directly from sequencing data and the reconstruction of their target sites. This strategy provided a rich resource of over 60 experimentally characterized LSRs that can function in human cells and thousands of additional candidates for large-payload genome editing without double-stranded DNA breaks.


2019 ◽  
Author(s):  
Anne C Barbosa ◽  
Zhengyao Xu ◽  
Kazhal Karari ◽  
Silke Hauf ◽  
William RA Brown

Eukaryotic centromeric DNA is famously variable in evolution but currently, this cannot be reconciled with the conservation of eukaryotic centromere function. It seems likely that centromeric DNA from different organisms contains conserved functionally important features but the identity of these features is unknown. The point centromeres of the budding yeast Saccharomyces cerevisiae and the regional centromeres of the fission yeast Schizosaccharomyces pombe are separated by 350 million years of evolution and are canonical examples of the paradoxical relationship1 between centromeric DNA sequence and function. We have established a centromere-replacement strategy in Schizosaccharomyces pombe in order to resolve this paradox experimentally. Centromere-replacement shows that an A+T rich bacterial DNA sequence has weak centromere function and that elements of the Saccharomyces cerevisiae centromere embedded in short sequences from the non-centromeric S. pombe wee1 gene function almost as well as native S. pombe centromeric DNA. These observations demonstrate that determinants of centromere function are held in common by the budding and fission yeasts and that A+T rich DNA is both necessary and sufficient for function in S. pombe. Given the evolutionary distance between these yeasts, it is likely that A+T rich DNA has centromere function in a wide variety of eukaryotes. Centromere-replacement uses unidirectional serine recombinases that work well in many organisms2 3 and our experimental strategy should allow this idea to be tested in other eukaryotes.


mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
A. Sivertsen ◽  
J. Janice ◽  
T. Pedersen ◽  
T. M. Wagner ◽  
J. Hegstad ◽  
...  

ABSTRACT Enterococcus faecium has a highly variable genome prone to recombination and horizontal gene transfer. Here, we have identified a novel genetic island with an insertion locus and mobilization genes similar to those of staphylococcus cassette chromosome elements SCCmec. This novel element termed the enterococcus cassette chromosome (ECC) element was located in the 3′ region of rlmH and encoded large serine recombinases ccrAB similar to SCCmec. Horizontal transfer of an ECC element termed ECC::cat containing a knock-in cat chloramphenicol resistance determinant occurred in the presence of a conjugative reppLG1 plasmid. We determined the ECC::cat insertion site in the 3′ region of rlmH in the E. faecium recipient by long-read sequencing. ECC::cat also mobilized by homologous recombination through sequence identity between flanking insertion sequence (IS) elements in ECC::cat and the conjugative plasmid. The ccrABEnt genes were found in 69 of 516 E. faecium genomes in GenBank. Full-length ECC elements were retrieved from 32 of these genomes. ECCs were flanked by attR and attL sites of approximately 50 bp. The attECC sequences were found by PCR and sequencing of circularized ECCs in three strains. The genes in ECCs contained an amalgam of common and rare E. faecium genes. Taken together, our data imply that ECC elements act as hot spots for genetic exchange and contribute to the large variation of accessory genes found in E. faecium. IMPORTANCE Enterococcus faecium is a bacterium found in a great variety of environments, ranging from the clinic as a nosocomial pathogen to natural habitats such as mammalian intestines, water, and soil. They are known to exchange genetic material through horizontal gene transfer and recombination, leading to great variability of accessory genes and aiding environmental adaptation. Identifying mobile genetic elements causing sequence variation is important to understand how genetic content variation occurs. Here, a novel genetic island, the enterococcus cassette chromosome, is shown to contain a wealth of genes, which may aid E. faecium in adapting to new environments. The transmission mechanism involves the only two conserved genes within ECC, ccrABEnt, large serine recombinases that insert ECC into the host genome similarly to SCC elements found in staphylococci.


2015 ◽  
pp. 73-89 ◽  
Author(s):  
W. Marshall Stark
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document