cytokinin treatment
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Catriona H Walker ◽  
Alexander Ware ◽  
Jan Šimura ◽  
Karin Ljung ◽  
Zoe A Wilson ◽  
...  

To maximise their reproductive success, flowering plants must correctly time their entry into and exit from the reproductive phase (flowering). While much is known about the mechanisms that regulate the initiation of flowering, the regulation of end-of-flowering remains largely uncharacterised. End-of-flowering in Arabidopsis thaliana consists of the quasi-synchronous arrest of individual inflorescences, but it is unclear how this arrest is correctly timed with respect to environmental stimuli and ongoing reproductive success. Here we show that Arabidopsis inflorescence arrest is a complex developmental phenomenon which includes a decline in size and cessation of activity in the inflorescence meristem (IM), coupled with a separable developmental arrest in all unopened floral primordia (floral arrest); these events occur well before the visible arrest of the inflorescence. We show that global removal of inflorescences can delay both IM arrest and floral arrest, but that local fruit removal only delays floral arrest, emphasising the separability of these processes. We test a role for cytokinin in regulating inflorescence arrest, and find that cytokinin treatment can delay arrest. We further show that gain-of-function cytokinin receptor hypersensitive mutants can delay floral arrest, and also IM arrest, depending on the expression pattern of the receptor; conversely, loss-of-function mutants prevent extension of flowering in response to inflorescence removal. Collectively, our data suggest that the dilution of cytokinin among an increasing number of sink organs leads to end-of-flowering in Arabidopsis by triggering IM and floral arrest, conversely meaning that a lack of reproductive success can homeostatically extend flowering in compensation.


2020 ◽  
Author(s):  
Francois F. Barbier ◽  
Da Cao ◽  
Franziska Fichtner ◽  
Christoph Weiste ◽  
Maria-Dolores Perez-Garcia ◽  
...  

ABSTRACT-Plant architecture is controlled by several endogenous signals including hormones and sugars. However, only little is known about the nature and roles of the sugar signalling pathways in this process. Here we test whether the sugar pathway mediated by HEXOKINASE1 (HXK1) is involved in the control of shoot branching.-To test the involvement of HXK1 in the control of shoot architecture we modulated the HXK1 pathway using physiological and genetic approaches in diverse plants, rose, arabidopsis and pea and evaluated impacts of hormonal pathways.-We show that triggering a hexokinase-dependent pathway was able to promote bud outgrowth in pea and rose. In arabidopsis, both HXK1 deficiency and defoliation led to decreased shoot branching and conferred hypersensitivity to auxin. HXK1 expression was positively correlated with sugar availability. HXK1-deficient plants displayed decreased cytokinin levels and increased expression of MAX2 which is required for strigolactone signalling. The branching phenotype of HXK1-deficient plants could be partly restored by cytokinin treatment and strigolactone deficiency could override the negative impact of HXK1 deficiency on shoot branching.-Our observations demonstrate that a HXK1-dependent pathway contributes to the regulation of shoot branching and interact with hormones to modulate plant architecture.


2020 ◽  
Vol 48 (1) ◽  
pp. 150-161
Author(s):  
Adriana AURORI ◽  
Imola MOLNAR ◽  
Elena RAKOSY-TICAN

Induction of shoots or of somatic embryos is the key step for gaining the morphogenetic potential in sunflower (Helianthus annuus L.), species known as recalcitrant to in vitro regeneration. In the immature zygotic embryo derived tissues or in other juvenile tissues resulted from seedlings, the acquisition of the competence for regeneration can be achieved directly by cytokinin treatment or by preconditioning the explants on cytokinin containing medium. In this paper is presented a new type of explant for sunflower in vitro culture, consisting of the apex with primordial leaves, resulted from ungerminated mature zygotic embryo, in which a specific morphogenetic response was triggered by the exogenously applied auxins. Among the auxins tested, indole-3-acetic acid, indole-3-butyric acid and 1-naphthaleneacetic acid are inducers of an organogenetic response, apical/axillary shoots and adventitious buds being regenerated while 2,4-dichlorophenoxyacetic acid, 3,6-dichloro-2-methoxybenzoic acid and 4-amino-3,5,6-trichloropicolinic acid led to somatic embryo formation. Among the auxins tested only 4-amino-3,5,6-trichloropicolinic acid sustains the embryos development up to mature stage. A high amount of sucrose (120 g L-1) supplied during the auxin treatment promotes the maturation of the embryos directly on the induction medium for all tested auxins with embryogenic effect. These findings show that regardless of the type of morphogenetic response aimed in sunflower meristematic tissues resulted from mature embryos, the presence of auxins is mandatory.


Plant Science ◽  
2019 ◽  
Vol 283 ◽  
pp. 41-50 ◽  
Author(s):  
Amit Fahima ◽  
Saar Levinkron ◽  
Yochai Maytal ◽  
Anat Hugger ◽  
Itai Lax ◽  
...  

2019 ◽  
Vol 60 (8) ◽  
pp. 1842-1854 ◽  
Author(s):  
Shiori S Aki ◽  
Tatsuya Mikami ◽  
Satoshi Naramoto ◽  
Ryuichi Nishihama ◽  
Kimitsune Ishizaki ◽  
...  

Abstract Cytokinins are known to regulate various physiological events in plants. Cytokinin signaling is mediated by the phosphorelay system, one of the most ancient mechanisms controlling hormonal pathways in plants. The liverwort Marchantia polymorpha possesses all components necessary for cytokinin signaling; however, whether they respond to cytokinins and how the signaling is fine-tuned remain largely unknown. Here, we report cytokinin function in Marchantia development and organ formation. Our measurement of cytokinin species revealed that cis-zeatin is the most abundant cytokinin in Marchantia. We reduced the endogenous cytokinin level by overexpressing the gene for cytokinin oxidase, MpCKX, which inactivates cytokinins, and generated overexpression and knockout lines for type-A (MpRRA) and type-B (MpRRB) response regulators to manipulate the signaling. The overexpression lines of MpCKX and MpRRA, and the knockout lines of MpRRB, shared phenotypes such as inhibition of gemma cup formation, enhanced rhizoid formation and hyponastic thallus growth. Conversely, the knockout lines of MpRRA produced more gemma cups and exhibited epinastic thallus growth. MpRRA expression was elevated by cytokinin treatment and reduced by knocking out MpRRB, suggesting that MpRRA is upregulated by the MpRRB-mediated cytokinin signaling, which is antagonized by MpRRA. Our findings indicate that when plants moved onto land they already deployed the negative feedback loop of cytokinin signaling, which has an indispensable role in organogenesis.


2019 ◽  
Vol 20 (8) ◽  
pp. 2043
Author(s):  
Yanan Wang ◽  
Xiyu Zhang ◽  
Yanjiao Cui ◽  
Lei Li ◽  
Dan Wang ◽  
...  

Leaf senescence is a highly-programmed developmental process regulated by an array of multiple signaling pathways. Our group previously reported that overexpression of the protein phosphatase-encoding gene SSPP led to delayed leaf senescence and significantly enhanced cytokinin responses. However, it is still unclear how the delayed leaf senescence phenotype is associated with the enhanced cytokinin responses. In this study, we introduced a cytokinin receptor AHK3 knockout into the 35S:SSPP background. The phenotypic analysis of double mutant revealed that AHK3 loss-of-function reversed the delayed leaf senescence induced by SSPP. Moreover, we found the hypersensitivity of 35S:SSPP to exogenous cytokinin treatment disappeared due to the introduction of AHK3 knockout. Collectively, our results demonstrated that AHK3-mediated cytokinin signaling is required for the delayed leaf senescence caused by SSPP overexpression and the detailed mechanism remains to be further elucidated.


Author(s):  
Beata Janowska ◽  
Beata Janowska ◽  
Roman Andrzejak ◽  
Dagmara Smolińska ◽  
Monika Kwiatkowska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document