hadronic collider
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
pp. 455-517
Author(s):  
Eliezer Rabinovici

AbstractStarting sometime in 2008/2009 one expects to be able to take a glimpse at physics at the TeV scale. This will be done through the Large Hadronic Collider (LHC) at CERN, Geneva. It will be a result of an unprecedented coordinated international scientific effort. This chapter is written in 2007. It is essentially inviting disaster to spell out in full detail what the current various theoretical speculations on the physics are, as well motivated as they may seem at this time. What I find of more value is to elaborate on some of the ideas and the motivations behind them. Some may stay with us, some may evolve and some may be discarded as the results of the experiments unfold. When the proton antiproton collider was turned on in the early eighties of the last century at Cern the theoretical ideas were ready to face the experimental results in confidence, a confidence which actually had prevailed. The emphasis was on the tremendous experimental challenges that needed to be overcome in both the production and the detection of the new particles. As far as theory was concerned this was about the physics of the standard model and not about the physics beyond it. The latter part was left safely unchallenged. That situation started changing when the large electron positron (LEP) collider experiments also at Cern were turned on as well the experiments at the Tevatron at Fermilab. Today it is with rather little, scientifically based, theoretical confidence that one is anticipating the outcome of the experiments. It is less the method and foundations that are tested and more the prejudices. It is these which are at the center of this chapter. Some claim to detect over the years an oscilatory behavior in the amount of conservatism expressed by leaders in physics. The generation in whose life time relativity and quantum mechanics were discovered remained non-conservative throughout their life. Some of the latter developed eventually such adventurous ideas as to form as a reaction a much more conservative following generation. The conservative generation perfected the inherited tools and has uncovered and constructed the Standard Model. They themselves were followed by a less conservative generation. The new generation was presented with a seemingly complete description of the known forces. In order to go outside the severe constraints of the Standard Model the new generation has drawn upon some of the more adventurous ideas of the older generation as well as created it own ideas. In a way almost all accepted notions were challenged. In the past such an attitude has led to major discoveries such as relativity and quantum mechanics. In some cases it was carried too far, the discovery of the neutrino was initially missed as energy conservation was temporarily given up.



2016 ◽  
Vol 31 (20) ◽  
pp. 1630019 ◽  
Author(s):  
Harald Fritzsch

In a composite model of the weak bosons the p-wave bosons are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. Recently a two-photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be an excited weak tensor boson.



2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
H. Soltani ◽  
A. Damavandi Kamali ◽  
K. Nozari

Black hole thermodynamics is corrected in the presence of quantum gravity effects. Some phenomenological aspects of quantum gravity proposal can be addressed through generalized uncertainty principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of both a minimal measurable length and a maximal momentum on the thermodynamics of TeV-scale black holes. We then extend our study to the case that there are all natural cutoffs as minimal length, minimal momentum, and maximal momentum simultaneously. We also generalize our study to the model universes with large extra dimensions (LED). In this framework existence of black holes remnants as a possible candidate for dark matter is discussed. We study probability of black hole production in the Large Hadronic Collider (LHC) and we show this rate decreasing for sufficiently large values of the GUP parameter.



2013 ◽  
Vol 28 (09) ◽  
pp. 1330008 ◽  
Author(s):  
TAKESHI FUKUYAMA

We review SO(10) grand unified theories (GUTs) in four and five dimensions (4D and 5D). The renormalizable minimal SO(10) SUSY GUT is the central theme of this paper. It is very predictive and makes it possible to construct all mass matrices including those of the Dirac and heavy right-handed Majorana neutrinos. Its predictions covers all ranges of particle phenomena. The explicit construction of the Higgs superpotential and the explicit display of a symmetry breaking pattern from GUT to the SM show that the naive desert from the SM to GUT in the minimal supersymmetric standard model (MSSM) is a too simplified concept and we have many definitely determined intermediate energy scales in general. This situation destroys the naive gauge coupling unification in the MSSM scheme. Also the precise measurements of neutrino oscillation data have revealed several small but manifest mismatches with our predictions. Also there are arguments that it is impossible to construct a GUT theory in 4D with a finite number of multiplets that leads to the MSSM with a residual R symmetry. If we try to solve all these pathologies comprehensively, it is very attractive for us to go into extra dimensions. Extra dimension may be either warped or flat. The fifth dimension, for simplicity, is compactified on the S1/(Z2) (warped) or on the S1/(Z2×Z′2) (flat) orbifold with two inequivalent branes at the orbifold fixed points. In the former warped case, intermediate energy scales are translated with the positions of Higgs fields in the bulk and the fundamental scheme of the MSSM is recovered. On the other hand, in the latter flat scenario, all matter and Higgs multiplets reside on the Pati–Salam (PS) brane where the PS symmetry is manifest. There the original renormalizability in Yukawa coupling is broken but its essential structures of mass matrices in minimal SO(10) GUT in 4D is promoted to the PS invariant action in 4D. In the gaugino mediation mechanism, the SO(10) gauge multiplet is transmitted to the PS brane through the gaugino mediation with bulk gauge multiplet. Further breaking of the PS gauge group to the SM group is realized by VEVs of the Higgs multiplets [Formula: see text]. We show that this model not only cures all pathologies in SO(10) GUT in 4D but also provides the consistent inflation scenario and dark matter candidate and leptogenesis. The gauge coupling unification is successfully realized after incorporating the threshold corrections of the Kaluza–Klein modes. Finally we add some comments on the impacts of the discovery of a Higgs-like particle by the Large Hadronic Collider at CERN (LHC) on SUSY GUTs.



Author(s):  
P.F. Derwent ◽  
D. Amidei ◽  
A. Dunn ◽  
T. Song ◽  
S. Vejcik ◽  
...  




Author(s):  
A. Annovi ◽  
M.G. Bagliesi ◽  
A. Bardi ◽  
R. Carosi ◽  
M. Dell'Orso ◽  
...  


1999 ◽  
Vol 46 (4) ◽  
pp. 947-952 ◽  
Author(s):  
A. Bardi ◽  
S. Belforte ◽  
M. Dell'Orso ◽  
S. Galeotti ◽  
P. Giannetti ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document