equilibrium evaporation
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Jiawei Liu ◽  
Yingzhi Xia ◽  
Hui Li ◽  
Guoping Hu ◽  
Mingming Hu

Embankment soil affected by saline can not only cause roadbed settlement, frosting, and road cracks but also cause corrosion and cracking of roadbed pipelines, which seriously affects the stability of the road. Water evaporation and dry cracking of the saline soil mainly cause soil swelling, poor water stability, and corrosive characteristics of the embankment soil. In this study, the evaporative cracking characteristics of soil with different saline concentrations were investigated. The results showed that the moisture content decreased linearly with the drying time in the early evaporation process, subsequently decreased slow down in the mid-term evaporation, and finally become got and remain a residual moisture content, which are 46.39%, 44.05%, 42.70%, and 40.27% with the increase of the saline concentration. The evaporation process with different saline concentrations in the soil can be divided into three stages: uniform evaporation stage, slow down evaporation stage, and equilibrium evaporation stage, which was consistent with the moisture content change. With the development of the drying time, the cracks gradually appeared on the soil surface, gradually deepened in the soil, and expanded the crack network. The development of cracks can be divided into three stages: the cracking preparation stage, the crack development stage, and the crack stable stage. The cracking began at high evaporation rate under high saline concentration, and the fractal dimension remained stable under similar saline concentration. The fractal dimension was gradually increased with the decrease of the moisture content and the increase of the saline concentration, respectively. The soil began to crack with larger moisture under high saline concentration. The drying cracks in the nature were consistent with the configuration of the cracks formed in the experimental results.


2021 ◽  
Vol 43 (4) ◽  
pp. 51-61
Author(s):  
Ya.H. Hotskyi ◽  
G.K. Ivanitsky ◽  
A. R. Stepaniuk

Creation of new composite granular fertilizers with layered structure, which are formed due to the layered mechanism of granulation in the granulator of the fluidized bed is an urgent task. The process of forming these granules is achieved due to the layered granulation mechanism, the basis of which is the formation of a layer of solids on the surface of the granules by mass crystallization. In the production of granular fertilizers based on ammonium sulfate with the addition of organic and inorganic impurities an important place is occupied by the processes of evaporation and mass crystallization, which determine the morphological properties of the obtained granular material. During the experimental study of the evaporation process, it was found that the process consists of three main evaporation periods: the heating period from the initial temperature to equilibrium, the period of equilibrium evaporation and the decreasing drying rate period with crust formation, during which a solid crystal structure is formed. The beginning of each period according to the example of drying droplets in a gas stream during spray drying is described by the nature of the change in droplet temperature. This paper presents the obtained thermograms of the process of evaporation of droplets with a diameter of 3–7 mm 40%, 50% and 60% aqueous solutions of ammonium sulfate with the addition of a mixture of bone meal. The evaporation of 40%, 50% and 60% solutions of ammonium sulfate with the addition of a mixture of bone meal, with a given ratio of AS: BM on a dry residue of 60:40 and 80:20 on a surface temperature of 95°C in the second evaporation period crystalline nuclei appear, and the concentration of solute is close to saturated and almost unchanged, so that the evaporation rate and temperature of the drop, as can be seen from the thermogram, remain constant temperature for all solutions of ammonium sulfate. Increasing the content of bone meal from 8 to 24% to shift the wet thermometer in the kinetics of the evaporation process. The paper also presents the results of morphological analysis of the obtained solid crystallized drops of ammonium sulfate with impurities of bone meal. It was found that the solid crystallized drop of ammonium sulfate with bone meal consists of a framework of microcrystals of ammonium sulfate, with a reduced size of 10 to 80 μm, bone meal in the form of inclusions is placed in the frame, the particle size of bone meal varies up to 100 μm, indicating that the solution is a suspension.


Author(s):  
Irina A. Graur ◽  
Elizaveta Ya. Gatapova ◽  
Moritz Wolf ◽  
Marina A. Batueva

2021 ◽  
Vol 13 (7) ◽  
pp. 3833
Author(s):  
Gintautas Miliauskas ◽  
Egidijus Puida ◽  
Robertas Poškas ◽  
Povilas Poškas

The change in the thermal and energy state of the water droplet is defined numerically. The influence of droplet dispersity on the interaction of the transfer processes was evaluated. In influence of the Stefan flow was considered as well. The internal heat transfer of the droplet was defined by the combined heat transfer through effective conductivity and radiation model. The results of the numerical modeling of heat and mass transfer in water droplets in a wet flue gas flow of 1000 °C highlight the influence of the variation in heat transfer regimes in the droplet on the interaction of the transfer processes in consistently varying phase change regimes. The results of the investigation shows that the inner heat convection diminishes intensively in the transitional phase change regime because of a rapid slowdown of the slipping droplet in the gas. The radiation absorption in the droplet clearly decreases only at the final stage of equilibrium evaporation. The highlighted regularities of the interaction between combined transfer processes in water droplets are also valid for liquid fuel and other semi-transparent liquids sprayed into high-temperature flue gas flow. However, a qualitative evaluation should consider individual influence of dispersity that different liquids have.


2019 ◽  
Vol 11 ◽  
Author(s):  
D. Karamanis ◽  
S. Andriamonje ◽  
P. A. Assimakopoulos ◽  
G. Doukellis ◽  
D. A. Karademos ◽  
...  

On the context of the Cern n_TOF collaboration the 232Th(n,2n)231Th reaction cross section has been measured relative to the 56Fe(n,p)56Mn and 27Al(n,a)24Na reaction cross sections by the activation method for neutron energies up to 11 MeV. The neutrons were produced via the 2H(d,n) reaction using a deuterium filled gas-cell, at the 5.5MV TANDEM Accelerator of NCSR "Demokritos". In addition to the experimental work, theoretical Statistical model calculations have been performed using the computer code STAPRE/F. The code STAPRE is designed to calculate energy averaged cross sections for particle induced nuclear reactions with several emitted particles and gamma rays under the assumption of sequential evaporation. For the first evaporation step preequilibrium emission is taken into account while population of states resulting from the first equilibrium evaporation step is calculated using the Hauser-Feschbach theory. Fission process competition is also taken into account in the evaporation steps. Sensitive parameters for the calculation, like level density parameters, have been adopted after fitting experimental data for the competing (n,f) reaction. The results are being compared to the experimental data.


Author(s):  
V.E. Zarko

The computer code is elaborated for numerical simulation of transient combustion of energetic materials (EM) subjected to the action of time-dependent heat flux and under transient pressure conditions. It allows studying combustion response upon interrupted irradiation (transient pressure) and under action of periodically varied heat flux (pressure) in order to determine stability of ignition transients and parameters of transient combustion. The originally solid EM melts and then evaporates at the surface. It is assumed that chemical transformations occur both in the condensed and gas phases. At the burning surface, the phase transition condition in the form of Clapeyron-Clausius law for equilibrium evaporation is formulated that corresponds to the case of combustion of sublimated or melted EM. The paper contains description of transient combustion problem formulation and several examples of transient combustion modeling. At present time a precise prediction of transient burning rate characteristics is impossible because of the lack of information about magnitude of EM parameters at high temperatures. However, the simulation results bring valuable qualitative information about burning rate behavior at variations in time of external conditions – radiant flux and pressure.


Sign in / Sign up

Export Citation Format

Share Document