Effect of Hydrogen on Steady-State and Transient Combustion Instability Characteristics

2021 ◽  
Author(s):  
John Strollo ◽  
Stephen Peluso ◽  
Jacqueline O'Connor
Author(s):  
John Strollo ◽  
Stephen Peluso ◽  
Jacqueline O’Connor

Abstract This paper examines the effects of steady-state and transient hydrogen enrichment on thermoacoustic instability in a model gas turbine combustor. Combustion instability, a feedback loop between flame heat release rate oscillations and combustor acoustics, is characterized in a swirl-stabilized flame operated at a range of hydrogen-natural gas fuel blends and heat rates. Measurements of combustor chamber pressure fluctuations and CH* chemiluminescence imaging are used to characterize instability at a range of operating conditions. Steady-state tests show that both mixture heat rate and hydrogen content affect system stability. At a given heat rate, higher levels of hydrogen result in unstable combustion. As heat rate increases, instability occurs at lower concentrations of hydrogen in the fuel. Transient operation was tested in two directions — instability onset and decay — and two hydrogen-addition times — a short time of 1 millisecond and a longer time of 4 seconds. Results show that instability onset processes, through the transient addition of hydrogen, are highly repeatable regardless of the timescale of hydrogen addition. Certain instability decay processes are less repeatable, resulting in cases that do not fully transition from unstable to stable combustion despite similar changes in hydrogen fuel flow rate. Flame behavior before, during, and after the transient is characterized using high-speed CH* chemiluminescence imaging. Analysis of the high-speed images show changes in flame stabilization and dynamics during the onset and decay processes. The results of this study can have implications for systems that experience variations in fuel composition, particularly in light of growing interest in hydrogen as a renewable fuel.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2021 ◽  
Author(s):  
Wu Lan ◽  
Yuan Peng Du ◽  
Songlan Sun ◽  
Jean Behaghel de Bueren ◽  
Florent Héroguel ◽  
...  

We performed a steady state high-yielding depolymerization of soluble acetal-stabilized lignin in flow, which offered a window into challenges and opportunities that will be faced when continuously processing this feedstock.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


1979 ◽  
Vol 1 (4) ◽  
pp. 13-24
Author(s):  
E. Dahi ◽  
E. Lund
Keyword(s):  

2002 ◽  
Vol 16 (2) ◽  
pp. 71-81 ◽  
Author(s):  
Caroline M. Owen ◽  
John Patterson ◽  
Richard B. Silberstein

Summary Research was undertaken to determine whether olfactory stimulation can alter steady-state visual evoked potential (SSVEP) topography. Odor-air and air-only stimuli were used to determine whether the SSVEP would be altered when odor was present. Comparisons were also made of the topographic activation associated with air and odor stimulation, with the view toward determining whether the revealed topographic activity would differentiate levels of olfactory sensitivity by clearly identifying supra- and subthreshold odor responses. Using a continuous respiration olfactometer (CRO) to precisely deliver an odor or air stimulus synchronously with the natural respiration, air or odor (n-butanol) was randomly delivered into the inspiratory airstream during the simultaneous recording of SSVEPs and subjective behavioral responses. Subjects were placed in groups based on subjective odor detection response: “yes” and “no” detection groups. In comparison to air, SSVEP topography revealed cortical changes in response to odor stimulation for both response groups, with topographic changes evident for those unable to perceive the odor, showing the presence of a subconscious physiological odor detection response. Differences in regional SSVEP topography were shown for those who reported smelling the odor compared with those who remained unaware of the odor. These changes revealed olfactory modulation of SSVEP topography related to odor awareness and sensitivity and therefore odor concentration relative to thresholds.


Sign in / Sign up

Export Citation Format

Share Document