function discontinuity
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Author(s):  
chandra prakash singh

Abstract The memristor is a nanostructure resistive tuning two terminal novel electronics device that has been widely explored in the area of neuromorphic computing systems, memories, digital circuits, analog circuits and many more new applications. In this article an efficient and flexible window function is presented for linear drift memristor model. Propose window function provides a unique feature (controllable window function discontinuity) to linear drift memristor model by which DPHL (Distorted Pinched Hysteresis Loop) problem is resolved and also improved the programming resistance state of the memristor. Five control parameters are introduced in the presented window function, in order to fix the pre-existing problem (like boundary effect, boundary lock and inflexibility) and make it more flexible. The programmable analog gain amplifier circuit is ultimately executed to instantiate the utilization of evolved memristor model.


2016 ◽  
Vol 13 (02) ◽  
pp. 1650021 ◽  
Author(s):  
Patxi Ritter ◽  
Sofiane Aoudia ◽  
Alessandro D. A. M. Spallicci ◽  
Stéphane Cordier

The Regge–Wheeler–Zerilli (RWZ) wave-equation describes Schwarzschild–Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).


Author(s):  
JUN SHEN ◽  
WEI SHEN ◽  
DANFEI SHEN

Moments are widely used in pattern recognition, image processing, computer vision and multiresolution analysis. To clarify and to guide the use of different types of moments, we present in this paper a study on the different moments and compare their behavior. After an introduction to geometric, Legendre, Hermite and Gaussian–Hermite moments and their calculation, we analyze at first their behavior in spatial domain. Our analysis shows orthogonal moment base functions of different orders having different number of zero-crossings and very different shapes, therefore they can better separate image features based on different modes, which is very interesting for pattern analysis and shape classification. Moreover, Gaussian–Hermite moment base functions are much more smoothed, they are thus less sensitive to noise and avoid the artifacts introduced by window function discontinuity. We then analyze the spectral behavior of moments in frequency domain. Theoretical and numerical analyses show that orthogonal Legendre and Gaussian–Hermite moments of different orders separate different frequency bands more effectively. It is also shown that Gaussian–Hermite moments present an approach to construct orthogonal features from the results of wavelet analysis. The orthogonality equivalence theorem is also presented. Our analysis is confirmed by numerical results, which are then reported.


1973 ◽  
Vol 28 (10) ◽  
pp. 1668-1675
Author(s):  
J. Gerofi ◽  
H. K. Messerle

Refraction and reflection of a shockwave at a plasma/cold gas interface has been studied using an R.F. preheated section in an electrothermal shock tube. The gas used in the experiment was Argon at initial pressures from 10 to 30 Torr, with initial temperature of 9000 K.A detailed numerical analysis of the refraction event has been undertaken using a method that does not require definition of an effective γ. Methods that do use such a γ are not accurate, except for very weak shocks. Because of short ionization times it has been possible to assume equilibrium behind the various shock waves. Calculations suggest that in the region of interest, reflected and refracted shock velocities depend primarily on initial shock velocity, slightly on initial plasma temperature and very weakly on initial pressure. The analysis covers initial temperatures of 6000 to 12 000 K and initial pressures of 10 to 50 Torr.Calculations and experimental results are presented. These show that a step function discontinuity is a good approximation to the nature of the plasma cold gas interface in this situation.


Sign in / Sign up

Export Citation Format

Share Document