random transposition
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2019 ◽  
Vol 14 (1) ◽  
pp. 165-178
Author(s):  
E. Seynos-García ◽  
M. Castañeda-Lucio ◽  
J. Muñoz-Rojas ◽  
L. López-Pliego ◽  
M. Villalobos ◽  
...  

AbstractA random transposition mutant library of B. gladioli UAPS07070 was analyzed for searching mutants with impaired microbial antagonism. Three derivates showed diminished antimicrobial activity against a sensitive strain. The mutated loci showed high similarity to the quorum sensing genes of the AHL-synthase and its regulator. Another mutant was affected in a gene coding for a LysrR-type transcriptional regulator. The production of toxoflavin, the most well known antimicrobial-molecule and a major virulence factor of plant-pathogenic B. glumae and B. gladioli was explored. The absence of a yellowish pigment related to toxoflavin and the undetectable transcription of toxA in the mutants indicated the participation of the QS system and of the LysR-type transcriptional regulator in the regulation of toxoflavin. Additionally, those genes were found to be related to the swarming phenotype. Lettuce inoculated with the AHL synthase and the lysR mutants showed less severe symptoms. We present evidence of the participation of both, the quorum sensing and for the first time, of a LysR-type transcriptional regulator in antibiosis and swarming phenotype in a strain of B. gladioli


2013 ◽  
Vol 79 (15) ◽  
pp. 4568-4575 ◽  
Author(s):  
G. Perpetuini ◽  
H. Scornec ◽  
R. Tofalo ◽  
P. Serror ◽  
M. Schirone ◽  
...  

ABSTRACTOlive brine represents a stressful environment due to the high NaCl concentration, presence of phenolic compounds known as antimicrobials, and low availability of nutrients. Thus, only a few strains of lactic acid bacteria (LAB) are adapted to grow in and ferment table olives. To identify the mechanisms by which these few strains are able to grow in olive brine,Lactobacillus pentosusC11, a particularly resistant strain isolated from naturally fermented table olives, was mutagenized by random transposition using the Pjunc-TpaseIS1223system (H. Licandro-Seraut, S. Brinster, M. van de Guchte, H. Scornec, E. Maguin, P. Sansonetti, J. F. Cavin, and P. Serror, Appl. Environ. Microbiol. 78:5417–5423, 2012). A library of 6,000 mutants was generated and screened for adaptation and subsequent growth in a medium, named BSM (brine screening medium), which presents the stressful conditions encountered in olive brine. Five transposition mutants impaired in growth on BSM were identified. Transposition occurred in two open reading frames and in three transcription terminators affecting stability of transcripts. Thus, several essential genes for adaptation and growth ofL. pentosusC11 in olive brine were identified.


2006 ◽  
Vol 72 (1) ◽  
pp. 327-333 ◽  
Author(s):  
Yoann Le Breton ◽  
Nrusingh Prasad Mohapatra ◽  
W. G. Haldenwang

ABSTRACT This report describes the construction and characterization of a mariner-based transposon system designed to be used in Bacillus subtilis, but potentially applicable to other gram-positive bacteria. Two pUC19-derived plasmids were created that contain the mariner-Himar1 transposase gene, modified for expression in B. subtilis, under the control of either σA- or σB-dependent promoters. Both plasmids also contain a transposable element (TnYLB-1) consisting of a Kanr cassette bracketed by the Himar1-recognized inverse terminal repeats, as well as the temperature-sensitive replicon and Ermr gene of pE194ts. TnYLB-1 transposes into the B. subtilis chromosome with high frequency (10−2) from either plasmid. Southern hybridization analyses of 15 transposants and sequence analyses of the insertion sites of 10 of these are consistent with random transposition, requiring only a “TA” dinucleotide as the essential target in the recipient DNA. Two hundred transposants screened for sporulation proficiency and auxotrophy yielded five Spo− clones, three with insertions in known sporulation genes (kinA, spoVT, and yqfD) and two in genes (ybaN and yubB) with unknown functions. Two auxotrophic mutants were identified among the 200 transposants, one with an insertion in lysA and another in a gene (yjzB) whose function is unknown.


2006 ◽  
Vol 121 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Khalid Ibrahim Sallam ◽  
Yasuo Mitani ◽  
Tomohiro Tamura

2005 ◽  
Vol 136 (2) ◽  
pp. 203-233 ◽  
Author(s):  
Nathanaël Berestycki ◽  
Rick Durrett

2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Nathanael Berestycki ◽  
Rick Durrett

International audience Our work is motivated by Bourque-Pevzner's simulation study of the effectiveness of the parsimony method in studying genome rearrangement, and leads to a surprising result about the random transposition walk in continuous time on the group of permutations on $n$ elements starting from the identity. Let $D_t$ be the minimum number of transpositions needed to go back to the identity element from the location at time $t$. $D_t$ undergoes a phase transition: for $0 < c ≤ 1$, the distance $D_cn/2 ~ cn/2$, i.e., the distance increases linearly with time; for $c > 1$, $D_cn/2 ~ u(c)n$ where u is an explicit function satisfying $u(x) < x/2$. Moreover we describe the fluctuations of $D_{cn/2}$ about its mean at each of the three stages (subcritical, critical and supercritical). The techniques used involve viewing the cycles in the random permutation as a coagulation-fragmentation process and relating the behavior to the Erdős-Rényi random graph model.


Sign in / Sign up

Export Citation Format

Share Document