resinous compound
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2016 ◽  
Vol 2 (4) ◽  
pp. 195
Author(s):  
Harsha Chatrath

In present scenario huge quantity of waste are produced every day. It contains plastics, waste papers, plastic containers, some of these are degradable, and some of these are non-degradable waste.Non-biodegradable things are present in waste treated with mechanical pulverizing mechanisms and with few of strong chemical. Chemicals such as concentrated Hydrochloric, Sulphuric acids, sulphamic acids and many other hazardous chemicals are used for destroying wastes in simple form or in disperse form. Almost 70% of the waste is being dumped in the soil layer. After certain interval of time compounds present in soils such as salts of the metals and temperature of soil help in decomposing the waste periodically. Due to this process large quantity of soil gets contaminated. In this project we have tried to replace hazardous chemicals with other non-hazardous chemicals and some natural enzymes, which may give same reactions as with toxic chemicals. Objectives may also helps in use of eco friendly chemicals for reducing soil pollution and water pollutions. Hence it will minimize the other impacts on environment such as air pollution, noise pollutions, water pollutions and soil pollutions. All process will carry out under Green Chemistry cycles.


HortScience ◽  
2016 ◽  
Vol 51 (7) ◽  
pp. 838-842 ◽  
Author(s):  
Brian J. Pearson ◽  
Richard M. Smith ◽  
Jianjun Chen

Hops (Humulus lupulus) is a perennial, herbaceous crop cultivated for its strobiles, or cones, which contain a resinous compound used for flavoring and aroma in food, tea, and beer. The United States is the second largest global producer of hops with greater than 15,000 ha in production. Increased demand for hop products has recently resulted in production of hops in nontraditional production areas (non-Pacific northwest U.S. region). To examine cultivation potential of hops within the southeastern United States, 60 hop rhizomes consisting of four varieties were transplanted into native, deep sand soil (Candler and Tavares-Millhopper soil series) within a protected, open-sided greenhouse and evaluated for growth, strobile yield, and brewing values for a period of 2 years. Plant bine length was recorded weekly for 20 weeks throughout year 1 with mean bine lengths of 609, 498, 229, and 221 cm at harvest for ‘Chinook’, ‘Columbus’, ‘Amalia’ and ‘Neo1’, respectively. Mean harvested strobile dry weight recorded for year 1 was 21.2, 17.9, 9.0, and 8.2 g/plant for ‘Columbus’, ‘Chinook’, ‘Neo1’ and ‘Amalia’, respectively. With the exception of ‘Neo1’, mean strobile mass was lower for all cultivars during year 2 with 16.6, 10.3, 25.8, and 2.6 g/plant for ‘Columbus’, ‘Chinook’, ‘Neo1’ and ‘Amalia’, respectively. Alpha acid concentrations by percentage strobile mass for year 1 were 6.8%, 9.7%, 3.8%, and 4.3% for ‘Columbus’, ‘Chinook’, ‘Amalia’, and ‘Neo1’, respectively. Alpha acids varied year 2 with concentrations of 4.8%, 10.4%, and 5.6% for ‘Columbus’, ‘Chinook’, and ‘Neo1’, respectively. Findings support viability of hop production in the southeastern United States and establish the benchmark for future varietal trialing investigations.


2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000
Author(s):  
Shinjiro Ogita ◽  
Jung-Bum Lee ◽  
Fumiya Kurosaki ◽  
Yasuo Kato

Two types of suspension-cultured Aquilaria microcarpa cells, friable and aggregated, were selectively generated. The biosynthetic activities of primary and secondary metabolites in target cells were detected using laser scanning microscopy (LSM) imaging with diphenylboric acid 2-amino ethyl ester (DPBA) and 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one (Nile red) staining. Scanned friable cells produced weakly fluorescent images revealing low productivity of metabolites. On the other hand, scanning of aggregated cells produced clear fluorescent images depicting the accumulations of flavonoids and lipids. Furthermore, abundant deposition of an unknown resinous compound in extracellular portion of aggregated cells could be visualized. The resinous compound was white to whitish-gray in color and highly sedimented in the medium. Based on these observations, we focused our investigation of metabolite productivity on aggregated suspension cells. Some prominent extracellular compounds were detected in the used liquid medium, as well as in the resinous residue within the medium. The characteristics of these metabolites were investigated in detail via gas chromatography-mass spectrometry (GC-MS) analysis.


Sign in / Sign up

Export Citation Format

Share Document