robot stiffness
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Jiachen Jiao ◽  
Wei Tian ◽  
Lin Zhang ◽  
Bo Li ◽  
Junshan Hu ◽  
...  

Abstract Industrial robots are increasingly used in machining tasks because of their high flexibility and intelligence. However, the low structural stiffness of the robot seriously affects the positional accuracy and machining quality of robot operation equipment. Studying robot stiffness characteristics and optimization methods is an effective way to improve robot stiffness performance. Accordingly, aiming at the poor accuracy of stiffness modeling caused by approximating stiffness of each joint as constant, a variable stiffness identification method is proposed based on space gridding. Then, a task-oriented axial stiffness evaluation index is proposed to realize quantitative assessment of the stiffness performance in the machining direction. Besides, by analyzing the redundant kinematic characteristics of the robot machining system, a configuration optimization method is further come up with to maximize the index. For a large number of points or trajectory processing tasks, a configuration smoothing strategy is proposed to achieve fast acquisition of optimized configurations. Finally, experiments on a KR500 robot are conducted to verify the feasibility and validity of proposed stiffness identification and configuration optimization methods.


2019 ◽  
Vol 35 (2) ◽  
pp. 403-419 ◽  
Author(s):  
Kaitlin Oliver-Butler ◽  
John Till ◽  
Caleb Rucker

Author(s):  
Yingjie Guo ◽  
HuiYue Dong ◽  
Guifeng Wang ◽  
Yinglin Ke

Purpose The purpose of this paper is to introduce a robotic boring system for intersection holes in aircraft assembly. The system is designed to improve the boring quality and position accuracy of the intersection holes. Design/methodology/approach To improve the boring quality of intersection holes, a robot posture optimization model is established. The target of the model is to maximize the robot stiffness and the variate is location of the robot on the guideway. The model is solved by the iterative IKP algorithm based on the Jacobian matrix. To improve the position accuracy of intersection holes, a robot positioning accuracy compensation method is introduced. In the method, a laser tracker is used to measure the actual position and orientation of the boring bar. Combined with the desired position and orientation, the error can be obtained and compensated. Findings In practical case of the robotic boring system, the robot stiffness is effectively improved and the surface roughness of intersection holes achieves a grade of Ra0.8. Besides, the robot end achieves a position accuracy of 0.05 mm and an orientation accuracy of 0.05°. Practical implications The robotic boring system has been applied successfully in one of the aircraft assembly projects in northwest China. Originality/value The robotic boring system can be applied for machining intersection holes in an aircraft assembly. With the robot posture optimization method and accuracy compensation method, the boring quality and position accuracy of the intersection holes can be guaranteed.


Author(s):  
Yier Wu ◽  
Alexandr Klimchik ◽  
Anatol Pashkevich ◽  
Stéphane Caro ◽  
Benoît Furet

The paper focuses on the accuracy improvement of industrial robots by means of elasto-static parameters calibration. It proposes a new optimality criterion for measurement poses selection in calibration of robot stiffness parameters. This criterion is based on the concept of the manipulator test pose that is defined by the user via the joint angles and the external force. The proposed approach essentially differs from the traditional ones and ensures the best compliance error compensation for the test configuration. The advantages of this approach and its suitability for practical applications are illustrated by numerical examples, which deal with calibration of elasto-static parameters of planar manipulator with rigid links and compliant actuated joints.


Sign in / Sign up

Export Citation Format

Share Document