Off-line path correction of robotic face milling using static tool force and robot stiffness

Author(s):  
Ilya Tyapin ◽  
Knut Berg Kaldestad ◽  
Geir Hovland
2018 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Risdiyanto Edy Saputro ◽  
Indri Yaningsih ◽  
Heru Sukanto

Penelitian ini dilakukan untuk mengetahui pengaruh penerapan CAD /CAM terhadap proses penggilingan CNC terhadap kekasaran dan ketelitianpermukaan. Spesimen dibuat dengan menggunakan tujuh jenis prosespemotongan. Terdapat face milling, pocket milling, profile milling, slotmilling, pengeboran, thread milling dan surface contouring. Hasil penelitianmenunjukkan bahwa penerapan CAD / CAM dengan variasi prosespemotongan menghasilkan nilai kekasaran yang lebih rendah daripadatanpa penerapan CAD / CAM. Nilai kekasaran permukaan untuk masingmasingproses pemotongan adalah proses face milling (0,5028 μm; 0,5132μm), slot milling (0.664 μm; 0.6556 μm), profile milling (1.282 μm; 1.3128μm), pocket milling (1.3852 μm; 1.4856 μm ) Dan proses pengeboran(1.9944 μm; 2.1136 μm). Nilai rata-rata dimensi dari pengukuranmenunjukkan selisih antara hasil implementasi CAD / CAM dan tanpaimplementasi CAD / CAM. Persentase perbedaan panjang dan lebarmasing-masing 0,037%; 0,059% untuk profile milling; 0,039%; 0,061%untuk pocket milling; Dan 0.151%; 0,317% untuk pengeboran Penggunaanstatistik penerapan CAD / CAM tidak secara signifikan mempengaruhi nilaikekasaran permukaan namun memiliki pengaruh signifikan terhadapketepatan produk dengan tingkat presisi 95%.


2021 ◽  
pp. 1-30
Author(s):  
A. Guo ◽  
Z. Zhou ◽  
R. Wang ◽  
X. Zhao ◽  
X. Zhu

Abstract The full-wing solar-powered UAV has a large aspect ratio, special configuration, and excellent aerodynamic performance. This UAV converts solar energy into electrical energy for level flight and storage to improve endurance performance. The UAV only uses a differential throttle for lateral control, and the insufficient control capability during crosswind landing results in a large lateral distance bias and leads to multiple landing failures. This paper analyzes 11 landing failures and finds that a large lateral distance bias at the beginning of the approach and the coupling of base and differential throttle control is the main reason for multiple landing failures. To improve the landing performance, a heading angle-based vector field (VF) method is applied to the straight-line and orbit paths following and two novel 3D Dubins landing paths are proposed to reduce the initial lateral control bias. The results show that the straight-line path simulation exhibits similar phenomenon with the practical failure; the single helical path has the highest lateral control accuracy; the left-arc to left-arc (L-L) path avoids the saturation of the differential throttle; and both paths effectively improve the probability of successful landing.


Wear ◽  
2021 ◽  
pp. 203752
Author(s):  
A.R.F. Oliveira ◽  
L.R.R. da Silva ◽  
V. Baldin ◽  
M.P.C. Fonseca ◽  
R.B. Silva ◽  
...  

2021 ◽  
pp. 1-3
Author(s):  
Rajashekar Rangappa Mudaraddi ◽  
Hany Fawzi Greiss ◽  
Navin Kumar Manickam

Central venous cannulation is the most common procedure performed in perioperative setting and intensive care unit. Many case reports reported unusual positioning of central line catheters. Here, we would like to report a case of central line path in persistent left superior vena cava, a rare entity with a course similar to the right internal jugular central line. Preoperative computed tomography chest showed duplex superior vena cava which was not reported.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Alex Iglesias ◽  
Zoltan Dombovari ◽  
German Gonzalez ◽  
Jokin Munoa ◽  
Gabor Stepan

Cutting capacity can be seriously limited in heavy duty face milling processes due to self-excited structural vibrations. Special geometry tools and, specifically, variable pitch milling tools have been extensively used in aeronautic applications with the purpose of removing these detrimental chatter vibrations, where high frequency chatter related to slender tools or thin walls limits productivity. However, the application of this technique in heavy duty face milling operations has not been thoroughly explored. In this paper, a method for the definition of the optimum angles between inserts is presented, based on the optimum pitch angle and the stabilizability diagrams. These diagrams are obtained through the brute force (BF) iterative method, which basically consists of an iterative maximization of the stability by using the semidiscretization method. From the observed results, hints for the selection of the optimum pitch pattern and the optimum values of the angles between inserts are presented. A practical application is implemented and the cutting performance when using an optimized variable pitch tool is assessed. It is concluded that with an optimum selection of the pitch, the material removal rate can be improved up to three times. Finally, the existence of two more different stability lobe families related to the saddle-node and flip type stability losses is demonstrated.


2013 ◽  
Vol 718-720 ◽  
pp. 1673-1676
Author(s):  
Yun Chao Wang ◽  
Wen Jie Pang ◽  
Mei Zhou

Digging performances of excavator is a key important index for evaluation of excavator. It is a very complex and heavy work to compute digging performance of excavator. So a compact hydraulic excavator model was built by ADAMS software. The theoretical maximum tool force of excavator was analyzed. For bucket digging mode, the maximum tool force were analyzed for boom cylinder seven positions during the whole working range and the effect of different factors were discussed. The practical maximum tool force was gained. The actual tool force variations were found through the analysis of simulation results. It provides the basis for design and improvement of excavator.


Sign in / Sign up

Export Citation Format

Share Document