scholarly journals Optimality Criteria for Measurement Poses Selection in Calibration of Robot Stiffness Parameters

Author(s):  
Yier Wu ◽  
Alexandr Klimchik ◽  
Anatol Pashkevich ◽  
Stéphane Caro ◽  
Benoît Furet

The paper focuses on the accuracy improvement of industrial robots by means of elasto-static parameters calibration. It proposes a new optimality criterion for measurement poses selection in calibration of robot stiffness parameters. This criterion is based on the concept of the manipulator test pose that is defined by the user via the joint angles and the external force. The proposed approach essentially differs from the traditional ones and ensures the best compliance error compensation for the test configuration. The advantages of this approach and its suitability for practical applications are illustrated by numerical examples, which deal with calibration of elasto-static parameters of planar manipulator with rigid links and compliant actuated joints.

2012 ◽  
Vol 162 ◽  
pp. 161-170 ◽  
Author(s):  
Alexandr Klimchik ◽  
Yier Wu ◽  
Anatol Pashkevich ◽  
Stéphane Caro ◽  
Benoît Furet

The paper focuses on the calibration of elastostatic parameters of spatial anthropomorphic robots. It proposes a new strategy for optimal selection of the measurement configurations that essentially increases the efficiency of robot calibration. This strategy is based on the concept of the robot test-pose and ensures the best compliance error compensation for the test configuration. The advantages of the proposed approach and its suitability for practical applications are illustrated by numerical examples, which deal with calibration of elastostatic parameters of a 3 degrees of freedom anthropomorphic manipulator with rigid links and compliant actuated joints.


Author(s):  
A.A. Reznev ◽  
V.B. Kreyndelin

The application of optimality criteria for the study of space-time codes is considered. Known rank and determinant criteria are described. The computational complexity of determinant criteria is presented taking into account some estimation of the real CPUs specifications. An algorithm for calculating a new optimality criterion is described. The computational complexity of the new optimality criterion is evaluated. The new criterion is applied to the study of the space-time Golden matrix. The obtained criterion value is used to modify the Golden code. The modeling for Golden code demonstrates that criterion works and gives us better levels for noise immunity. The proposed optimality criterion is acceptable in terms of computational complexity even for a large number of antennas, which is typical for large-scale MIMO systems. Рассматривается применение критериев оптимальности для исследования пространственно-временных кодов.Описаны известные ранговый и детерминантный критерии. Для детерминантного критерия оценена вычислительная сложность с учетом определения специальных высокопроизводительных процессоров. Описан алгоритм расчета нового критерия оптимальности. Проведена оценка вычислительной сложности нового критерия оптимальности. Новый критерий применен для исследования пространственно-временной матрицы Голден. Полученное значение критерия использовано для модификациикода Голден. Продемонстрированы кривые помехоустойчивости для кода Голден и кода Голден с модифицированным параметром, получен энергетический выигрыш. Предложенный критерий оптимальности приемлем с точки зрения вычислительнойсложности даже при большом числе антенн, характерном для систем широкомасштабного MIMO.


Author(s):  
Bingjue Li ◽  
Andrew P. Murray ◽  
David H. Myszka

Any articulated system of rigid bodies defines a Statically Equivalent Serial Chain (SESC). The SESC is a virtual chain that terminates at the center of mass (CoM) of the original system of bodies. A SESC may be generated experimentally without knowing the mass, CoM, or length of each link in the system given that its joint angles and overall CoM may be measured. This paper presents three developments toward recognizing the SESC as a practical modeling technique. Two of the three developments improve utilizing the technique in practical applications where the arrangement of the joints impacts the derivation of the SESC. The final development provides insight into the number of poses needed to create a usable SESC in the presence of data collection errors. First, modifications to a matrix necessary in computing the SESC are proposed. Second, the problem of generating a SESC experimentally when the system of bodies includes a mass fixed in the ground frame are presented and a remedy is proposed for humanoid-like systems. Third, an investigation of the error of the experimental SESC versus the number of data readings collected in the presence of errors in joint readings and CoM data is conducted. By conducting the method on three different systems with various levels of data error, a general form of the function for estimating the error of the experimental SESC is proposed.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 748
Author(s):  
Qi Liu ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
Yu Qiao ◽  
Qian Cheng ◽  
...  

The drive at the center of gravity (DCG) principle has been adopted in computer numerical control (CNC) machines and industrial robots that require heavy-duty and quick feeds. Using this principle requires accurate corrections of positioning errors. Conventional error compensation methods may cause vibrations and unstable control performances due to the delay between compensation and motor motion. This paper proposes a new method to reduce the positioning errors of the dual-driving gantry-type machine tool (DDGTMT), namely, a typical DCG-principle-based machine tool. An error prediction method is proposed to characterize errors online. An algorithm is proposed to quickly and accurately compensate the errors of the DDGTMT. Experiment results verify that the non-delay error compensation method proposed in this paper can effectively improve the accuracy of the DDGTMT.


2017 ◽  
Vol 12 (1) ◽  
pp. 130-146
Author(s):  
Amir T. Payandeh Najafabadi ◽  
Ali Panahi Bazaz

AbstractAn usual reinsurance policy for insurance companies admits one or two layers of the payment deductions. Under optimality criterion of minimising the Conditional Tail Expectation (CTE) risk measure of the insurer’s total risk, this article generalises an optimal stop-loss reinsurance policy to an optimal multi-layer reinsurance policy. To achieve such optimal multi-layer reinsurance policy, this article starts from a given optimal stop-loss reinsurance policy f(⋅). In the first step, it cuts down the interval [0, ∞) into intervals [0, M1) and [M1, ∞). By shifting the origin of Cartesian coordinate system to (M1, f(M1)), and showing that under the CTE criteria $$f\left( x \right)I_{{[0,M_{{\rm 1}} )}} \left( x \right){\plus}\left( {f\left( {M_{{\rm 1}} } \right){\plus}f\left( {x{\minus}M_{{\rm 1}} } \right)} \right)I_{{[M_{{\rm 1}} ,{\rm }\infty)}} \left( x \right)$$ is, again, an optimal policy. This extension procedure can be repeated to obtain an optimal k-layer reinsurance policy. Finally, unknown parameters of the optimal multi-layer reinsurance policy are estimated using some additional appropriate criteria. Three simulation-based studies have been conducted to demonstrate: (1) the practical applications of our findings and (2) how one may employ other appropriate criteria to estimate unknown parameters of an optimal multi-layer contract. The multi-layer reinsurance policy, similar to the original stop-loss reinsurance policy is optimal, in a same sense. Moreover, it has some other optimal criteria which the original policy does not have. Under optimality criterion of minimising a general translative and monotone risk measure ρ(⋅) of either the insurer’s total risk or both the insurer’s and the reinsurer’s total risks, this article (in its discussion) also extends a given optimal reinsurance contract f(⋅) to a multi-layer and continuous reinsurance policy.


2016 ◽  
Vol 20 (2) ◽  
pp. 498-507 ◽  
Author(s):  
Dai Meng ◽  
Todd Shoepe ◽  
Gustavo Vejarano

2009 ◽  
Vol 131 (5) ◽  
Author(s):  
X. Q. Huang ◽  
L. He ◽  
David L. Bell

This paper presents a combined experimental and computational study of unsteady flows in a linear turbine cascade oscillating in a three-dimensional bending/flapping mode. Detailed experimental data are obtained on a seven-bladed turbine cascade rig. The middle blade is driven to oscillate and oscillating cascade data are obtained using an influence coefficient method. The numerical simulations are performed by using a 3D nonlinear time-marching Navier–Stokes flow solver. Single-passage domain computations for arbitrary interblade phase angles are achieved by using the Fourier shape correction method. Both measurements and predictions demonstrate a fully 3D behavior of the unsteady flows. The influence of the aerodynamic blockage introduced by part-span shrouds on turbine flutter has been investigated by introducing flat plate shaped shrouds at 75% span. In contrast to practical applications, in the present test configuration, the mode of vibration of the blades remains unchanged by the introduction of the part-span shroud. This allows the influence of the aerodynamic blockage introduced by the part-span shroud to be assessed in isolation from the change in mode shape. A simple shroud model has been developed in the computational solver. The computed unsteady pressures around the shrouds are in good agreement with the experimental data, demonstrating the validity of the simple shroud model. Despite of notable variations in local unsteady pressures around the shrouds, the present results show that the blade aerodynamic damping is largely unaffected by the aerodynamic blockage introduced by part-span shrouds.


Sign in / Sign up

Export Citation Format

Share Document