alumina supports
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 14)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jordan Meyet ◽  
Anton Ashuiev ◽  
Gina Noh ◽  
Mark Newton ◽  
Daniel Klose ◽  
...  

The selective conversion of methane to methanol remains one of the holy grails of chemistry, where Cu-exchanged zeolites have been shown to selectively convert methane to methanol under stepwise conditions. Over the years, several active sites have been proposed, ranging from mono-, di- to trimeric Cu(II). Herein, we report the formation of well-dispersed monomeric Cu(II) species supported on alumina using surface organometallic chemistry and their reactivity towards the selective and stepwise conversion of methane to methanol. Extensive studies using various transition alumina supports combined with spectroscopic characterization, in particular electron paramagnetic resonance (EPR), show that the active sites are associated with specific facets, which are typically found in gamma- and eta-alumina phase, and that their EPR signature can be attributed to species having a tri-coordinated [(Al<sub>2</sub>O)Cu<sup>II</sup>O(OH)]<sup>-</sup>,T-shape geometry. Overall, the selective conversion of methane to methanol, a two-electron process, involve two of these isolated monomeric Cu(II) sites that play in concert.


2020 ◽  
Author(s):  
Jordan Meyet ◽  
Anton Ashuiev ◽  
Gina Noh ◽  
Mark Newton ◽  
Daniel Klose ◽  
...  

The selective conversion of methane to methanol remains one of the holy grails of chemistry, where Cu-exchanged zeolites have been shown to selectively convert methane to methanol under stepwise conditions. Over the years, several active sites have been proposed, ranging from mono-, di- to trimeric Cu(II). Herein, we report the formation of well-dispersed monomeric Cu(II) species supported on alumina using surface organometallic chemistry and their reactivity towards the selective and stepwise conversion of methane to methanol. Extensive studies using various transition alumina supports combined with spectroscopic characterization, in particular electron paramagnetic resonance (EPR), show that the active sites are associated with specific facets, which are typically found in gamma- and eta-alumina phase, and that their EPR signature can be attributed to species having a tri-coordinated [(Al<sub>2</sub>O)Cu<sup>II</sup>O(OH)]<sup>-</sup>,T-shape geometry. Overall, the selective conversion of methane to methanol, a two-electron process, involve two of these isolated monomeric Cu(II) sites that play in concert.


2020 ◽  
Author(s):  
Jordan Meyet ◽  
Anton Ashuiev ◽  
Gina Noh ◽  
Mark Newton ◽  
Daniel Klose ◽  
...  

The selective conversion of methane to methanol remains one of the holy grails of chemistry, where Cu-exchanged zeolites have been shown to selectively convert methane to methanol under stepwise conditions. Over the years, several active sites have been proposed, ranging from mono-, di- to trimeric Cu(II). Herein, we report the formation of well-dispersed monomeric Cu(II) species supported on alumina using surface organometallic chemistry and their reactivity towards the selective and stepwise conversion of methane to methanol. Extensive studies using various transition alumina supports combined with spectroscopic characterization, in particular electron paramagnetic resonance (EPR), show that the active sites are associated with specific facets, which are typically found in gamma- and eta-alumina phase, and that their EPR signature can be attributed to species having a tri-coordinated [(Al<sub>2</sub>O)Cu<sup>II</sup>O(OH)]<sup>-</sup>,T-shape geometry. Overall, the selective conversion of methane to methanol, a two-electron process, involve two of these isolated monomeric Cu(II) sites that play in concert.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4150
Author(s):  
Miguel Palomino ◽  
Hideki Ono ◽  
Susana Valencia ◽  
Avelino Corma

The preparation of continuous layers of highly hydrophobic pure silica ITQ-29 zeolite, potentially applicable as hydrophobic membranes for separation of molecules based on their polarity, has been investigated. Continuous layers of intergrown ITQ-29 zeolite crystals were successfully grown on porous alumina supports by optimization of the synthesis conditions, such as the appropriate selection of the seeds, the procedure for the gel preparation, and the calcination conditions. This resulted in the formation of all silica ITQ-29 zeolite layers without the presence of germanium required in previously reported ITQ-29 membranes, with the subsequent improvement in quality and stability, as verified by the absence of cracks after calcination. We have proved that the incorporation of aluminum from the support into the zeolite layer does not occur, neither during the secondary growth nor through migration of aluminum species during calcination.


ChemCatChem ◽  
2020 ◽  
Vol 12 (19) ◽  
pp. 4939-4950 ◽  
Author(s):  
Catherine E. Miles ◽  
Tess R. Carlson ◽  
Benjamin J. Morgan ◽  
Peter J. Topalian ◽  
Jacob R. Schare ◽  
...  

2020 ◽  
Vol 282 ◽  
pp. 121102
Author(s):  
Vincent Claude ◽  
Julien G. Mahy ◽  
Cédric Wolfs ◽  
Stéphanie D. Lambert

Sign in / Sign up

Export Citation Format

Share Document