scholarly journals Formalization of the MRDP Theorem in the Mizar System

2019 ◽  
Vol 27 (2) ◽  
pp. 209-221
Author(s):  
Karol Pąk

Summary This article is the final step of our attempts to formalize the negative solution of Hilbert’s tenth problem. In our approach, we work with the Pell’s Equation defined in [2]. We analyzed this equation in the general case to show its solvability as well as the cardinality and shape of all possible solutions. Then we focus on a special case of the equation, which has the form x2 − (a2 − 1)y2 = 1 [8] and its solutions considered as two sequences $\left\{ {{x_i}(a)} \right\}_{i = 0}^\infty ,\left\{ {{y_i}(a)} \right\}_{i = 0}^\infty$ . We showed in [1] that the n-th element of these sequences can be obtained from lists of several basic Diophantine relations as linear equations, finite products, congruences and inequalities, or more precisely that the equation x = yi(a) is Diophantine. Following the post-Matiyasevich results we show that the equality determined by the value of the power function y = xz is Diophantine, and analogously property in cases of the binomial coe cient, factorial and several product [9]. In this article, we combine analyzed so far Diophantine relation using conjunctions, alternatives as well as substitution to prove the bounded quantifier theorem. Based on this theorem we prove MDPR-theorem that every recursively enumerable set is Diophantine, where recursively enumerable sets have been defined by the Martin Davis normal form. The formalization by means of Mizar system [5], [7], [4] follows [10], Z. Adamowicz, P. Zbierski [3] as well as M. Davis [6].

1982 ◽  
Vol 47 (3) ◽  
pp. 549-571 ◽  
Author(s):  
James P. Jones

In 1961 Martin Davis, Hilary Putnam and Julia Robinson [2] proved that every recursively enumerable set W is exponential diophantine, i.e. can be represented in the formHere P is a polynomial with integer coefficients and the variables range over positive integers.In 1970 Ju. V. Matijasevič used this result to establish the unsolvability of Hilbert's tenth problem. Matijasevič proved [11] that the exponential relation y = 2x is diophantine This together with [2] implies that every recursively enumerable set is diophantine, i.e. every r.e. set Wcan be represented in the formFrom this it follows that there does not exist an algorithm to decide solvability of diophantine equations. The nonexistence of such an algorithm follows immediately from the existence of r.e. nonrecursive sets.Now it is well known that the recursively enumerable sets W1, W2, W3, … can be enumerated in such a way that the binary relation x ∈ Wv is also recursively enumerable. Thus Matijasevič's theorem implies the existence of a diophantine equation U such that for all x and v,


1958 ◽  
Vol 23 (4) ◽  
pp. 389-392 ◽  
Author(s):  
J. R. Shoenfield

In this paper we answer some of the questions left open in [2]. We use the terminology of [2]. In particular, a theory will be a formal system formulated within the first-order calculus with identity. A theory is identified with the set of Gödel numbers of the theorems of the theory. Thus Craig's theorem [1] asserts that a theory is axiomatizable if and only if it is recursively enumerable.In [2], Feferman showed that if A is any recursively enumerable set, then there is an axiomatizable theory T having the same degree of unsolvability as A. (This result was proved independently by D. B. Mumford.) We show in Theorem 2 that if A is not recursive, then T may be chosen essentially undecidable. This depends on Theorem 1, which is a result on recursively enumerable sets of some independent interest.Our second result, given in Theorem 3, gives sufficient conditions for a theory to be creative. These conditions are more general than those given by Feferman. In particular, they show that the system of Kreisel described in [2] is creative.


1957 ◽  
Vol 22 (2) ◽  
pp. 161-175 ◽  
Author(s):  
Solomon Feferman

In his well-known paper [11], Post founded a general theory of recursively enumerable sets, which had its metamathematical source in questions about the decision problem for deducibility in formal systems. However, in centering attention on the notion of degree of unsolvability, Post set a course for his theory which has rarely returned to this source. Among exceptions to this tendency we may mention, as being closest to the problems considered here, the work of Kleene in [8] pp. 298–316, of Myhill in [10], and of Uspenskij in [15]. It is the purpose of this paper to make some further contributions towards bridging this gap.From a certain point of view, it may be argued that there is no real separation between metamathematics and the theory of recursively enumerable sets. For, if the notion of formal system is construed in a sufficiently wide sense, by taking as ‘axioms’ certain effectively found members of a set of ‘formal objects’ and as ‘proofs’ certain effectively found sequences of these objects, then the set of ‘provable statements’ of such a system may be identified, via Gödel's numbering technique, with a recursively enumerable set; and conversely, each recursively enumerable set is identified in this manner with some formal system (cf. [8] pp. 299–300 and 306). However, the pertinence of Post's theory is no longer clear when we turn to systems formalized within the more conventional framework of the first-order predicate calculus. It is just this restriction which serves to clarify the difference in spirit of the two disciplines.


2018 ◽  
Vol 26 (2) ◽  
pp. 175-181
Author(s):  
Marcin Acewicz ◽  
Karol Pąk

Summary The main purpose of formalization is to prove that two equations ya(z)= y, y = xz are Diophantine. These equations are explored in the proof of Matiyasevich’s negative solution of Hilbert’s tenth problem. In our previous work [6], we showed that from the diophantine standpoint these equations can be obtained from lists of several basic Diophantine relations as linear equations, finite products, congruences and inequalities. In this formalization, we express these relations in terms of Diophantine set introduced in [7]. We prove that these relations are Diophantine and then we prove several second-order theorems that provide the ability to combine Diophantine relation using conjunctions and alternatives as well as to substitute the right-hand side of a given Diophantine equality as an argument in a given Diophantine relation. Finally, we investigate the possibilities of our approach to prove that the two equations, being the main purpose of this formalization, are Diophantine. The formalization by means of Mizar system [3], [2] follows Z. Adamowicz, P. Zbierski [1] as well as M. Davis [4].


1972 ◽  
Vol 37 (3) ◽  
pp. 572-578 ◽  
Author(s):  
Raphael M. Robinson

A set D of natural numbers is called Diophantine if it can be defined in the formwhere P is a polynomial with integer coefficients. Recently, Ju. V. Matijasevič [2], [3] has shown that all recursively enumerable sets are Diophantine. From this, it follows that a bound for n may be given.We use throughout the logical symbols ∧ (and), ∨ (or), → (if … then …), ↔ (if and only if), ⋀ (for every), and ⋁ (there exists); negation does not occur explicitly. The variables range over the natural numbers 0,1,2,3, …, except as otherwise noted.It is the purpose of this paper to show that if we do not insist on prenex form, then every Diophantine set can be defined existentially by a formula in which not more than five existential quantifiers are nested. Besides existential quantifiers, only conjunctions are needed. By Matijasevič [2], [3], the representation extends to all recursively enumerable sets. Using this, we can find a bound for the number of conjuncts needed.Davis [1] proved that every recursively enumerable set of natural numbers can be represented in the formwhere P is a polynomial with integer coefficients. I showed in [5] that we can take λ = 4. (A minor error is corrected in an Appendix to this paper.) By the methods of the present paper, we can again obtain this result, and indeed in a stronger form, with the universal quantifier replaced by a conjunction.


1982 ◽  
Vol 47 (1) ◽  
pp. 1-7 ◽  
Author(s):  
A. M. Dawes

AbstractIt is known from work of P. Young that there are recursively enumerable sets which have optimal orders for enumeration, and also that there are sets which fail to have such orders in a strong sense. It is shown that both these properties are widespread in the class of recursively enumerable sets. In fact, any infinite recursively enumerable set can be split into two sets each of which has the property under consideration. A corollary to this result is that there are recursive sets with no optimal order of enumeration.


1999 ◽  
Vol 64 (4) ◽  
pp. 1403-1406 ◽  
Author(s):  
Todd Hammond

Let {We}e∈ω be a standard enumeration of the recursively enumerable (r.e.) subsets of ω = {0,1,2,…}. The lattice of recursively enumerable sets, , is the structure ({We}e∈ω,∪,∩). ≡ is a congruence relation on if ≡ is an equivalence relation on and if for all U, U′ ∈ and V, V′ ∈ , if U ≡ U′ and V ≡ V′, then U ∪ V ≡ U′ ∪ V′ and U ∩ V ≡ U′ ∩ V′. [U] = {V ∈ | V ≡ U} is the equivalence class of U. If ≡ is a congruence relation on , the elements of the quotient lattice / ≡ are the equivalence classes of ≡. [U] ∪ [V] is defined as [U ∪ V], and [U] ∩ [V] is defined as [U ∩ V]. We say that a congruence relation ≡ on is if {(i, j)| Wi ≡ Wj} is . Define =* by putting Wi, =* Wj if and only if (Wi − Wj)∪ (Wj − Wi) is finite. Then =* is a congruence relation. If D is any set, then we can define a congruence relation by putting Wi Wj if and only if Wi ∩ D =* Wj ∩D. By Hammond [2], a congruence relation ≡ ⊇ =* is if and only if ≡ is equal to for some set D.The Friedberg splitting theorem [1] asserts that if A is any recursively enumerable set, then there exist disjoint recursively enumerable sets A0 and A1 such that A = A0∪ A1 and such that for any recursively enumerable set B


1989 ◽  
Vol 54 (2) ◽  
pp. 376-395 ◽  
Author(s):  
Steffen Lempp ◽  
Theodore A. Slaman

AbstractWork in the setting of the recursively enumerable sets and their Turing degrees. A set X is low if X′, its Turing jump, is recursive in ∅′ and high if X′ computes ∅″. Attempting to find a property between being low and being recursive, Bickford and Mills produced the following definition. W is deep, if for each recursively enumerable set A, the jump of A ⊕ W is recursive in the jump of A. We prove that there are no deep degrees other than the recursive one.Given a set W, we enumerate a set A and approximate its jump. The construction of A is governed by strategies, indexed by the Turing functionals Φ. Simplifying the situation, a typical strategy converts a failure to recursively compute W into a constraint on the enumeration of A, so that (W ⊕ A)′ is forced to disagree with Φ(−;A′). The conversion has some ambiguity; in particular, A cannot be found uniformly from W.We also show that there is a “moderately” deep degree: There is a low nonzero degree whose join with any other low degree is not high.


2001 ◽  
Vol 8 (35) ◽  
Author(s):  
Mayer Goldberg

In this paper, we present a schema for constructing one-point bases for recursively enumerable sets of lambda terms. The novelty of the approach is that we make no assumptions about the terms for which the one-point basis is constructed: They need not be combinators and they may contain constants and free variables. The significance of the construction is twofold: In the context of the lambda calculus, it characterises one-point bases as ways of ``packaging'' sets of terms into a single term; And in the context of realistic programming languages, it implies that we can define a single procedure that generates any given recursively enumerable set of procedures, constants and free variables in a given programming language.


1968 ◽  
Vol 33 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Jens Erik Fenstad

The well-known incompleteness results of Gödel assert that there is no recursively enumerable set of sentences of formalized first order arithmetic which entails all true statements of that theory. It is equally well known that by introducing sufficiently nonconstructive rules, such as the ω-rule of induction, completeness can be re-established.Starting from the work of Turing [4] Feferman in [1] developed another method, viz. the study of transfinite recursive progressions of theories, for closing the gap between Gödel (recursively enumerable sets of axioms yield incompleteness) and Tarski (number-theoretic truth is not arithmetically definable).


Sign in / Sign up

Export Citation Format

Share Document