northeastern south china sea
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 43)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Aiqin Han ◽  
Jianping Gan ◽  
Minhan Dai ◽  
Zhongming Lu ◽  
Linlin Liang ◽  
...  

Coastal downwelling is generally considered to have a limited biological effect compared with coastal upwelling. In this study, downslope transport of nearshore, nutrient-enriched waters during downwelling is found to induce distinct biological productivity in the water column over the northeastern South China Sea (NSCS). By conducting a process-driven study over a widened shelf with intensified downwelling in the NSCS, we investigated the biophysical processes associated with strong nutrient enrichment in the water column of downwelled waters. These processes and underlying mechanisms are largely unreported and remain unclear. Field measurements and a three-dimensional coupled physical-biological model incorporating nitrate (N), phytoplankton (P), zooplankton (Z), and detritus (D) were utilized to investigate distinct cross-shore nutrient transport over the uniquely widened NSCS shelf. We revealed that intensified downwelling circulation, dynamically induced by the widened shelf topography, enhanced chlorophyll a and biological productivity in a strip of well-mixed water over the inner shelf as well as in the downwelled water over the mid-shelf. Strong time lags and spatial differences existed among N, P, and Z because of the physical transport and the ensuing biogeochemical response. The intensified downslope transport of nutrient-rich coastal water formed distinct cross-shore wedge-shaped P, Z, and D structures, while N was rapidly consumed in the water column. This study illustrates the underlying coupled physical-biogeochemical processes associated with the observed biogeochemical response to wind-driven downwelling circulation over the variable shelf, which are commonly found in coastal oceans worldwide.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weifeng Yang ◽  
Xiufeng Zhao ◽  
Laodong Guo ◽  
Bangqin Huang ◽  
Min Chen ◽  
...  

Black carbon (BC) is believed to be refractory and thus affects the timescale of organic carbon conversion into CO2 and the magnitude of the sink of CO2. However, the fate of BC in the oceans remains poorly understood. Here, 210Po and 210Pb were measured to examine the export of soot in the northeastern South China Sea (SCS). Concentrations of soot decreased from 0.141 ± 0.021 μmol-C L–1 (mean ± SD) in the mixed layer (0–30 m) to 0.087 μmol-C L–1 at the euphotic base (150 m) due to potential photodegradation within the euphotic zone. In the twilight zone, however, the soot showed an increasing pattern along with the total particulate matter and total particulate organic carbon (POC) contents, corresponding to additions from the shelf/slope sediment resuspension through lateral transport. Using the deficits of 210Po, the export flux of soot from the euphotic zone was calculated to be 0.172 ± 0.016 mmol-C m–2 d–1 and increased with depth. Assuming that the soot is entirely refractory below the euphotic zone, the sediment-derived soot fluxes were estimated based on the increase in soot fluxes relative to the base of the euphotic zone, with values varying from 0.149 ± 0.030 to 0.96 ± 0.10 μmol-C L–1. This indicates that sediment resuspension is an important source of soot to the ocean interior in the SCS. Coupling the sediment-derived soot and 210Po-derived POC fluxes gave rise to a Martin Curve-like flux attenuation of local euphotic zone-derived POC in the twilight zone with b value of 0.70 ± 0.01. These results suggest that soot could be useful for constraining in situ POC fluxes and their transport.


2021 ◽  
pp. 229086
Author(s):  
Jinhui Cheng ◽  
Jiazheng Zhang ◽  
Minghui Zhao ◽  
Feng Du ◽  
Chaoyan Fan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianfeng Wang ◽  
Fei Yu ◽  
Feng Nan ◽  
Qiang Ren ◽  
Zifei Chen ◽  
...  

AbstractOcean turbulence can impact the transfer of heat, nutrients, momentum and sea level rise, which are crucially important to climate systems. The Luzon Strait, one of the mixing hotspots, is important for water exchange between the northeastern South China Sea and West Pacific. Here, for the first time, we carry out full-depth direct microstructure measurements surrounding the Luzon Strait to clarify the three-dimensional distributions of turbulence. We demonstrate that the turbulent kinetic energy dissipation rates in the upper and middle layers of the northeastern South China Sea are on the same order of magnitude as those in the West Pacific. The dissipation rates are only bottom enhanced near the rough topography of the South China Sea slope and Luzon Strait which is one order of magnitude larger than those at smooth area. The relevant bottom diapycnal diffusivity in the South China Sea is elevated in the West Pacific by a factor of three, instead of by two orders of magnitude as overestimated by indirect parameterization. These results may appear surprising in light of previous studies but are in fact consistent with predictions from internal wave-topography interaction theory.


Sign in / Sign up

Export Citation Format

Share Document