scholarly journals Observations of Shallow Methane Bubble Emissions From Cascadia Margin

2021 ◽  
Vol 9 ◽  
Author(s):  
Anna P. M. Michel ◽  
Victoria L. Preston ◽  
Kristen E. Fauria ◽  
David P. Nicholson

Open questions exist about whether methane emitted from active seafloor seeps reaches the surface ocean to be subsequently ventilated to the atmosphere. Water depth variability, coupled with the transient nature of methane bubble plumes, adds complexity to examining these questions. Little data exist which trace methane transport from release at a seep into the water column. Here, we demonstrate a coupled technological approach for examining methane transport, combining multibeam sonar, a field-portable laser-based spectrometer, and the ChemYak, a robotic surface kayak, at two shallow (<75 m depth) seep sites on the Cascadia Margin. We demonstrate the presence of elevated methane (above the methane equilibration concentration with the atmosphere) throughout the water column. We observe areas of elevated dissolved methane at the surface, suggesting that at these shallow seep sites, methane is reaching the air-sea interface and is being emitted to the atmosphere.

2020 ◽  
Vol 14 (3) ◽  
pp. 7082-7093
Author(s):  
Jahirwan Ut Jasron ◽  
Sudjito Soeparmani ◽  
Lilis Yuliati ◽  
Djarot B. Darmadi

The hydrodynamic performance of oscillating water column (OWC) depends on the depth of the water, the size of the water column and its arrangement, which affects the oscillation of the water surface in the column. An experimental method was conducted by testing 4 water depths with wave periods of 1-3 s. All data recorded by the sensor is then processed and presented in graphical form. The research focused on analyzing the difference in wave power absorption capabilities of the three geometric types of OWC based on arrangements of water columns. The OWC devices designed as single water column, the double water column in a series arrangement which was perpendicular to the direction of wave propagation, and double water column in which the arrangement of columns was parallel to the direction of wave propagation. This paper discussed several factors affecting the amount of power absorbed by the device. The factors are the ratio of water depth in its relation to wavelength (kh) and the inlet openings ratio (c/h) of the devices. The test results show that if the water depth increases in the range of kh 0.7 to 0.9, then the performance of the double chamber oscillating water column (DCOWC) device is better than the single chamber oscillating water column (SCOWC) device with maximum efficiency for the parallel arrangement 22,4%, series arrangement 20.8% and single column 20.7%. However, when referring to c/h, the maximum energy absorption efficiency for a single column is 27.7%, double column series arrangement is 23.2%, and double column parallel arrangement is 29.5%. Based on the results of the analysis, DCOWC devices in parallel arrangement showed the ability to absorb better wave power in a broader range of wave frequencies. The best wave of power absorption in the three testing models occurred in the wave period T = 1.3 seconds.


2018 ◽  
Vol 15 (4) ◽  
pp. 997-1009 ◽  
Author(s):  
Guizhi Wang ◽  
Shuling Wang ◽  
Zhangyong Wang ◽  
Wenping Jing ◽  
Yi Xu ◽  
...  

Abstract. To investigate variation in nitrite, nitrate, phosphate, and silicate in a spring–neap tide in a coral reef system influenced by groundwater discharge, we carried out a time-series observation of these nutrients and 228Ra, a tracer of groundwater discharge, in the Luhuitou fringing reef at Sanya Bay in the South China Sea. The maximum 228Ra, 45.3 dpm 100 L−1, appeared at low tide and the minimum, 14.0 dpm 100 L−1, appeared during a flood tide in the spring tide. The activity of 228Ra was significantly correlated with water depth and salinity in the spring–neap tide, reflecting the tidal-pumping feature of groundwater discharge. Concentrations of all nutrients exhibited strong diurnal variation, with a maximum in the amplitude of the diel change for nitrite, nitrate, phosphate, and silicate in the spring tide of 0.46, 1.54, 0.12, and 2.68 µM, respectively. Nitrate and phosphate were negatively correlated with water depth during the spring tide but showed no correlation during the neap tide. Nitrite was positively correlated with water depth in the spring and neap tide due to mixing of nitrite-depleted groundwater and nitrite-rich offshore seawater. They were also significantly correlated with salinity (R2  ≥  0.9 and P < 0.05) at the ebb flow of the spring tide, negative for nitrate and phosphate and positive for nitrite, indicating the mixing of nitrite-depleted, nitrate- and phosphate-rich less saline groundwater and nitrite-rich, nitrate- and phosphate-depleted saline offshore seawater. We quantified variation in oxidized nitrogen (NOx) and phosphate contributed by biological processes based on deviations from mixing lines of these nutrients. During both the spring and neap tide biologically contributed NOx and phosphate were significantly correlated with regression slopes of 4.60 (R2  =  0.16) in the spring tide and 13.4 (R2  =  0.75) in the neap tide, similar to the composition of these nutrients in the water column, 5.43 (R2  =  0.27) and 14.2 (R2  =  0.76), respectively. This similarity indicates that the composition of nutrients in the water column of the reef system was closely related with biological processes during both tidal periods, but the biological influence appeared to be less dominant, as inferred from the less significant correlations (R2  =  0.16) during the spring tide when groundwater discharge was more prominent. Thus, the variability of nutrients in the coral reef system was regulated mainly by biological uptake and release in a spring–neap tide and impacted by mixing of tidally driven groundwater and offshore seawater during spring tide.


Author(s):  
Zhengzhi Deng ◽  
Zhenhua Huang ◽  
Adrian W. K. Law

An analytical theory is developed for an oscillating water column (OWC) with a V-shaped channel to improve the pneumatic efficiency of wave energy extraction. An eigenfunction expansion method is used in a cylindrical coordinate system to investigate wave interaction with the OWC converter system. Auxiliary functions are introduced to capture the singular behaviours in the velocity field near the salient corners and cusped edges. Effects of the OWC dimensions, the opening angle and length of the V-shaped channel, as well as the incident wave direction, on the pneumatic efficiency of wave energy extraction are examined. Compared with a system without the V-shaped channel, our results show that the V-shaped channel can significantly increase the conversion efficiency and widen the range of wave frequency over which the OWC system can operate at a high efficiency. For typical coastal water depths, the OWC converter system can perform efficiently when the diameter of the OWC chamber is in the range of 1 5 – 1 2 times the water depth, the opening angle of the V-shaped channel is in the range of [ π /2, 3 π /4] and the length of the V-shaped channel is in the range of 1–1.5 times the water depth.


2005 ◽  
Vol 2 (4) ◽  
pp. 331-362
Author(s):  
I. A. Seeberg-Elverfeldt ◽  
C. B. Lange ◽  
J. Pätzold ◽  
G. Kuhn

Abstract. Laminated sediments in the Shaban Deep, a brine-filled basin in the northern Red Sea, were analyzed with backscattered electron imagery. Here we present possible mechanisms involved in the formation of laminae of various types and homogenous intervals arising from the detailed investigation of multicore GeoB 7805-1 (26 13.9' N and 35 22.6' E; water depth 1447 m) and gravity core GeoB 5836-2 (26 12.61' N, 35 21.56' E; water depth 1475 m). Sediment makeup includes six types: a) a laminated structure with alternating light (mainly coccoliths) and dark (diatom frustules) layers, where the diatom component is indicative of the intra-annual variability between stratification and mixing events; b) a pocket-like structure attributed to the sinking of particles within fecal pellets and aggregates; c) a matrix of tightly packed diatoms that relates to extended stratification/mixing periods of the water column; d) homogenous intervals that result from turbidity deposition; e) silt accumulations which origin may lie in agglutinated foraminifers; and f) pyrite layers with pyrite formation initiated at the seawater-brine interface.


2013 ◽  
Vol 634-638 ◽  
pp. 3563-3566
Author(s):  
Hai Wang Ye ◽  
Dong Ling Nong ◽  
Ting Li ◽  
Jie Wang Ye

When charging in water-filled-hole with emulsion mixed loading truck, if the charging hose can not reach the borehole bottom, there will be a water column in the charge. Emulsion explosive charging in water-filled-hole is simulated under three conditions with different water levels, charging velocity and hole diameter when the hose of the explosive mixed loading truck does not reach the hole bottom. The results show that explosive can not reach the bottom of the blasthole if the water depth exceeds the maximum effective range of the jet flow, which is proportional to charging speed and hole diameter, and there will exist a water column at the bottom of the hole. To prevent that, the distance between the hose outlet and the hole bottom must be shorter than the effective range when charging. Besides, increasing charging velocity also works.


2003 ◽  
Vol 30 (12) ◽  
Author(s):  
Katja U. Heeschen ◽  
Anne M. Tréhu ◽  
Robert W. Collier ◽  
Erwin Suess ◽  
Gregor Rehder

Author(s):  
Baojin Wu ◽  
Genming Luo ◽  
Michael M. Joachimski ◽  
Paul B. Wignall ◽  
Lidan Lei ◽  
...  

The largest mass extinction since the advent of animals occurred during the Permian-Triassic (P-Tr) transition, ca. 252 Ma, and is commonly attributed to the eruption of the Siberian Traps large igneous province. However, the direct killing mechanism is still debated. In this study, we investigated marine redox conditions of the intermediate water column that most organisms inhabit with special attention to the time interval before the onset of the mass extinction. The carbon isotope composition of carbonate and organic carbon (δ13Ccarb and δ13Corg) as well as the nitrogen isotope composition of bulk nitrogen (δ15N) were analyzed in four P-Tr boundary sequences (Zhongli, Jianshi, Ganxi, and Chaotian sections), which record a transect from a shallow water carbonate platform to a deep water, lower ramp slope in South China. δ13Ccarb shows a distinct negative shift in all sections and displays a clear, 2−4‰, decreasing gradient accompanying an increase in water depth both before and after the mass extinction. A distinct negative shift in δ15N is observed in the shallow water Zhongli section, whereas a minor negative shift is present in the three deeper water sections. Before the mass extinction, the δ15N values from shallow water sections are higher than those from deeper waters. The low δ15N values close to 0‰ in deeper water sections suggest that microbial nitrogen fixation was the predominant source of biologically available nitrogen before the onset of the mass extinction. Thus, the water depth- dependent gradient in δ13Ccarb and δ15N suggests that an oxygen-deficient intermediate water column was already present before the mass extinction. The uniform δ15N values around 0‰ accompanying the onset of the mass extinction reveal that anoxic intermediate waters expanded into shallow waters. Meanwhile, the distinct positive shift in δ13Corg observed in upper ramp slope sections, i.e., the Jianshi and Ganxi sections, suggests that a euxinic photic zone was at least episodically present in the earliest Triassic. The temporal coincidence between the expansion of intermediate water column anoxia and the onset of the P-Tr mass extinction supports the hypothesis that marine anoxia was a direct killing mechanism.


Author(s):  
E. Vijayakrishna Rapaka ◽  
S. Neelamani ◽  
R. Natarajan

Wave transmission and pneumatic efficiency of an oscillating water column (OWC) type wave energy device resting on group of piles is investigated using physical model study. The caisson blocks 45% of the water depth. The co-efficient of transmission of the device varies from 0.1 to 0.4 for B/L range of 0.1 to 0.7, where ‘B’ is the width of the caisson in the direction of wave propagation and ‘L’ is the wavelength. The pneumatic efficiency varies from 20% to 50% with an average value of 0.35. The results of the present study can be used in the design of OWC caisson used for both wave energy conversion and breakwater in deeper water.


2020 ◽  
Author(s):  
Martin Blumenberg ◽  
Stefan Schlömer ◽  
Miriam Römer ◽  
Katja Heeschen ◽  
Hendrik Müller ◽  
...  

&lt;p&gt;Methane is the second most important greenhouse gas and, considering a period of 100 years, has a more than 30 times higher &amp;#8220;global warming potential&amp;#8221; than carbon dioxide. Emissions from the production, storage, distribution and use of fossil energy resources in recent years sum up to about 15 % of global methane emissions with numbers still being under discussion and topic of numerous research programs.&lt;/p&gt;&lt;p&gt;Abandoned oil and gas wells are one of the sources of methane from the oil and gas sector. Recent studies found escaping methane at selected abandoned drill holes in the central North Sea. Assuming this would hold for one third of the ~11.000 wells in the region, the process would introduce significant amounts of methane at shallow water depth. Interestingly, the collected methane was of biogenic rather than thermogenic origin, potentially escaping from shallow gas pockets. Likely, this methane was mobilized by mechanical disturbance of the sediments through the drilling operation and the well section has served as a pathway thereafter. However, little is known about the number of wells affected and the relevance for the amounts of methane realeased.&lt;/p&gt;&lt;p&gt;During a research cruise with the German research vessel Heincke in July, 2019, we studied seafloor characteristics, water column anomalies and sediment methane geochemistry and further inspected visually nine abandoned well sites at ~40 m water depth in the German sector of the central North Sea (Dogger Bank). The cruise targeted different situations, including known seeps in the Dutch part of the Dogger Bank, well sites of different ages and an area where abandoned wells penetrate shallow gas pockets. First data demonstrate that at none of the studied sites concentrations of dissolved methane were enriched in the upper water column. For most sites, sediment and deep water methane data demonstrate concentrations in the range known as background for that area (i.e., deep water methane close to ~ 10 nM). At one site with high indications for the presence of shallow gas pockets, we observed methane abundances several times enriched compared to background. However, the enrichments also occurred 500 m away from the drill site and did not increase towards the center. Based on our data we argue for an active natural seep situation rather than a leaking well and underline that natural seeps may challenge the identification of potentially leaking wells.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document