marine layer
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

MAUSAM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 183-186
Author(s):  
S. B. S. S. SARMA

The coastal waters of Indian sub -continent do not have reliable measurements of fine structure of radio refractivity especially in near real-time basis needed to mitigate the effects of anomalous propagation for the defence communications as well as for antisubmarine warfare. This programme was designed to document the radio refractive layer structure and variations of the marine layer in tropical waters of India. The paper describes the above observations taken using the airborne microwave refractometer developed by the author at National Physical Laboratory, New Delhi. Typical observations taken (for the first time in India) under normal and anomalous propagation conditions are presented and the results are compared with the special shipborne observations made under MONEX operation over the coastal waters of India.


2020 ◽  
pp. 311-349
Author(s):  
Beata Możejko

As can be seen from the comments herein, every time that Długokęcki tries to add something new to the main themes I deal with in writing the history of the caravel, he makes error after error. It applies to both the marine layer of monograph and understanding of the European context. His interpretation of the sources and the theories he builds on this basis in order to create an alternative picture are unsuccessful. All in all, though it is evident that he has tried very hard, Długokęcki is unable to change any of the findings regarding the major themes addressed in my monograph.


2018 ◽  
Vol 75 (4) ◽  
pp. 1243-1269 ◽  
Author(s):  
Kelly Lombardo ◽  
Tristan Kading

Abstract Inland squall lines respond to the stable marine atmospheric boundary layer (MABL) as they move toward a coastline and offshore. As a storm’s cold pool collides with the marine layer, characteristics of both determine the resulting convective forcing mechanism over the stable layer and storm characteristics. Idealized numerical experiments exploring a parameter space of MABL characteristics show that the postcollision forcing mechanism is determined by the buoyancy of the cold pool relative to the MABL. When the outflow is less buoyant, storms are forced by a cold pool within the marine environment. When the buoyancies are equivalent, a hybrid cold pool–internal gravity wave develops after the collision. The collision between a cold pool and less buoyant MABL initiates internal waves along the stable layer, regardless of MABL depth. These waves are inefficient at lifting air into the storm, and ascent from the trailing cold pool is needed to support deep convection. Storm intensity decreases with deeper and less buoyant MABLs, in part due to the reduction in elevated instability. Precipitation is enhanced just prior to the collision between a storm and the deepest marine layers. Storms modify their environment downstream, leading to the development of a moist adiabatic unstable layer and a lowering of the level of free convection (LFC) to below the top of the deepest marine layer. An MABL moving as a sea breeze into the storm-modified air successfully lifts parcels to the new LFC, generating convective towers ahead of the squall line. This mechanism may contribute to increased coastal flash flooding risks during observed events.


Solar Energy ◽  
2018 ◽  
Vol 162 ◽  
pp. 454-471 ◽  
Author(s):  
Dipak K. Sahu ◽  
Handa Yang ◽  
Jan Kleissl

Evolution ◽  
2012 ◽  
Vol 66 (12) ◽  
pp. 3825-3835 ◽  
Author(s):  
Russell Greenberg ◽  
Raymond M. Danner
Keyword(s):  

Author(s):  
Patrick J. Mathiesen ◽  
Craig Collier ◽  
Jan P. Kleissl

For solar irradiance forecasting, the operational numerical weather prediction (NWP) models (e.g. the North American Model (NAM)) have excellent coverage and are easily accessible. However, their accuracy in predicting cloud cover and irradiance is largely limited by coarse resolutions (> 10 km) and generalized cloud-physics parameterizations. Furthermore, with hourly or longer temporal output, the operational NWP models are incapable of forecasting intra-hour irradiance variability. As irradiance ramp rates often exceed 80% of clear sky irradiance in just a few minutes, this deficiency greatly limits the applicability of the operational NWP models for solar forecasting. To address these shortcomings, a high-resolution, cloud-assimilating model was developed at the University of California, San Diego (UCSD) and Garrad-Hassan, America, Inc (GLGH). Based off of the Weather and Research Forecasting (WRF) model, an operational 1.3 km-gridded solar forecast is implemented for San Diego, CA that is optimized to simulate local meteorology (specifically, summertime marine layer fog and stratus conditions) and sufficiently resolved to predict intra-hour variability. To produce accurate cloud-field initializations, a direct cloud assimilation system (WRF-CLDDA) was also developed. Using satellite imagery and ground weather station reports, WRF-CLDDA statistically populates the initial conditions by directly modifying cloud hydrometeors (cloud water and water vapor content). When validated against the dense UCSD pyranometer network, WRF-CLDDA produced more accurate irradiance forecasts than the NAM and more frequently predicted marine layer fog and stratus cloud conditions.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
B. Lebassi-Habtezion ◽  
R. Van Buskirk

We present the results of a simulation study of the wind energy resources of southeastern Eritrea. In this study, we simulate the three dimensional wind fields during typical, steady conditions of the Southern Red Sea southeast monsoon season. The simulations verify the existence of a low level jet (LLJ) contained within the highly stratified marine layer over the Southern Red Sea. The LLJ is caused by the channeling and the acceleration of marine layer flow as it passes through the strait of Bab el Mandeb on its way from the Indian Ocean to the Eastern Sahara. The LLJ extends from 12.5 deg to 14.5 deg N latitude in the Southern Red Sea and has peak velocities at 300–600 m elevation above the sea. Sea-land breezes advect the high speeds of the LLJ onshore along a 200 km stretch of southeastern Eritrean coastline, producing an excellent wind energy resource that peaks daily at 3 p.m. LST. This resource is currently under development for both grid-connected and decentralized village wind energy applications.


2011 ◽  
Vol 11 (15) ◽  
pp. 7417-7443 ◽  
Author(s):  
S. P. Hersey ◽  
J. S. Craven ◽  
K. A. Schilling ◽  
A. R. Metcalf ◽  
A. Sorooshian ◽  
...  

Abstract. The Pasadena Aerosol Characterization Observatory (PACO) represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1–2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Regardless of regime, organic aerosol (OA) is the most significant constituent of nonrefractory submicron Los Angeles aerosol (42, 43, and 55 % of total submicron mass in regimes I, II, and III, respectively). The overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively), with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA) in Los Angeles. Online analysis of water soluble organic carbon (WSOC) indicates that water soluble organic mass (WSOM) reaches maxima near 14:00–15:00 local time (LT), but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly in accumulation mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode dominated by organics. Particulate NH4NO3 and (NH4)2SO4 appear to be NH3-limited in regimes I and II, but a significant excess of particulate NH4+ in the hot, dry regime III suggests less SO42− and the presence of either organic amines or NH4+-associated organic acids. C-ToF-AMS data were analyzed by Positive Matrix Factorization (PMF), which resolved three factors, corresponding to a hydrocarbon-like OA (HOA), semivolatile OOA (SV-OOA), and low-volatility OOA (LV-OOA). HOA appears to be a periodic plume source, while SV-OOA exhibits a strong diurnal pattern correlating with ozone. Peaks in SV-OOA concentration correspond to peaks in DMA number concentration and the appearance of a fine organic mode. LV-OOA appears to be an aged accumulation mode constituent that may be associated with aqueous-phase processing, correlating strongly with sulfate and representing the dominant background organic component. Periods characterized by high SV-OOA and LV-OOA were analyzed by filter analysis, revealing a complex mixture of species during periods dominated by SV-OOA and LV-OOA, with LV-OOA periods characterized by shorter-chain dicarboxylic acids (higher O:C ratio), as well as appreciable amounts of nitrate- and sulfate-substituted organics. Phthalic acid was ubiquitous in filter samples, suggesting that PAH photochemistry may be an important SOA pathway in Los Angeles. Aerosol composition was related to water uptake characteristics, and it is concluded that hygroscopicity is largely controlled by organic mass fraction (OMF). The hygroscopicity parameter κ averaged 0.31 ± 0.08, approaching 0.5 at low OMF and 0.1 at high OMF, with increasing OMF suppressing hygroscopic growth and increasing critical dry diameter for CCN activation (Dd). An experiment-averaged κorg of 0.14 was calculated, indicating that the highly-oxidized organic fraction of aerosol in Los Angeles is appreciably more hygroscopic than previously reported in urban areas. Finally, PACO will provide context for results forthcoming from the CalNex field campaign, which involved ground sampling in Pasadena during the spring and summer of 2010.


Sign in / Sign up

Export Citation Format

Share Document