tonsillar descent
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 0)

OBJECTIVE Posterior vault distraction osteogenesis (PVDO) is an effective tool to increase intracranial volume and expand the posterior cranial fossa. During PVDO, the authors extended osteotomy posterior to the foramen magnum to fully expand the posterior cranial fossa. The aim of this study was to investigate the efficacy of complete PVDO in posterior fossa expansion and treatment of Chiari malformation type I (CM-I) in patients with craniosynostosis. METHODS Patients with craniosynostosis who had undergone complete PVDO between January 2012 and May 2020 were reviewed retrospectively. A coronal osteotomy extending to the foramen magnum was performed and the foramen magnum was decompressed by removing its posterior rim with a 1-mm Kerrison rongeur. Four distractor devices were placed and the vector of distraction was controlled from the posterior to the inferior-posterior direction, depending on the deformity. Changes in the intracranial volume, posterior cranial fossa area, and cerebellar tonsillar descent were measured after complete PVDO by using CT and MRI. RESULTS A total of 11 patients with craniosynostosis and concurrent CM-I were included in the study. The mean age was 34.6 ± 24.0 months (continuous variables are expressed as the mean ± SD throughout). One patient had sleep apnea, which was consistent with CM-I, and another patient had a headache, which was nonspecific. The intracranial volume increased from 1179.6 ± 180.2 cm3 to 1440.6 ± 251.5 cm3 (p = 0.003; 24.5% increase compared to the preoperative volume). The posterior skull base area increased from 44.9 ± 19.3 cm2 to 72.7 ± 18.1 cm2 (p = 0.004). Cerebellar tonsillar descent decreased in all 11 patients after complete PVDO (preoperative: 10.8 ± 3.7 mm, postoperative: 2.7 ± 3.0 mm; p = 0.003). Among the 11 patients, 5 showed complete resolution of cerebellar tonsillar herniation. CONCLUSIONS Complete PVDO can more efficiently expand the posterior cranial fossa, unlike conventional methods. Moreover, it helps to relieve cerebellar tonsillar herniation. Complete PVDO is a powerful tool to increase the intracranial and posterior fossa volumes in patients with craniosynostosis and concurrent CM-I.


Author(s):  
Valentina Pennacchietti ◽  
Matthias Schulz ◽  
Anna Tietze ◽  
Karin Schwarz ◽  
Ulrich-Wilhelm Thomale

Abstract Introduction Brachycephaly and anterior and posterior plagiocephaly appear as an isolated entity or manifest in syndromic conditions. In severe cases, possible treatment options currently comprise either cranioplasty or osteogenetic distraction. The aim of this paper is to retrospectively review the perioperative course of a series of children treated by posterior meander expansion technique at our institution with focus on the course of postoperative intracranial volume and eventual tonsillar descent evolution. Methods Forty-two children received a posterior cranial vault remodeling by means of a posterior meander technique during a 7-year period. Hospital records were reviewed, and pre- and postoperative MRIs were analyzed for intracranial volume, cephalic and asymmetry index, and tonsillar position over time. Results Median age at surgery was 11.5 months (range 17 days–10 years). Nineteen children had a symmetrical cranial deformity, twenty-three an asymmetrical synostosis. Half of the cohort showed a syndromic condition. Transfusions were administered in the majority (92.2%) of the cases. A significant postoperative increase of intracranial volume was present from 1188.9 ± 370.4 cm3 to 1324.8 ± 352.9 cm3 (p < 0.001). The asymmetry index showed a significant improvement postoperatively: 0.86 ± 0.06 versus 0.91 ± 0.05 (p < 0.001), while the cephalic index showed a non-statistical change (0.91 ± 0.11 versus 0.88 ± 0.08). Tonsillar herniation, bilateral or homolateral, showed no significant changes at early control, while a nonsignificant amelioration of tonsillar descent was seen among children older than 12 months at late imaging follow-up. Conclusion Among the osteoplastic techniques, the posterior meander technique offers several advantages, such as early mobilization of the child, less bony defects, absence of implants, and a small complication rate. However, further comparative studies among different surgical techniques are needed.


Author(s):  
Scott C. Seaman ◽  
Luyuan Li ◽  
Arnold H. Menezes ◽  
Brian J. Dlouhy

OBJECTIVE Chiari malformation type I (CM-I) is a congenital and developmental abnormality that results in tonsillar descent 5 mm below the foramen magnum. However, this cutoff value has poor specificity as a predictor of clinical severity. Therefore, the authors sought to identify a novel radiographic marker predictive of clinical severity to assist in the management of patients with CM-I. METHODS The authors retrospectively reviewed 102 symptomatic CM-I (sCM-I) patients and compared them to 60 age-matched normal healthy controls and 30 asymptomatic CM-I (aCM-I) patients. The authors used the fourth ventricle roof angle (FVRA) to identify fourth ventricle “bowing,” a configuration change suggestive of fourth ventricle outlet obstruction, and compared these results across all three cohorts. A receiver operating characteristic (ROC) curve was used to identify a predictive cutoff for brainstem dysfunction. Binary logistic regression was used to determine whether bowing of the fourth ventricle was more predictive of brainstem dysfunction than tonsillar descent, clival canal angle, or obex position in aCM-I and sCM-I patients. RESULTS The FVRA had excellent interrater reliability (intraclass correlation 0.930, 95% CI 0.905–0.949, Spearman r2 = 0.766, p < 0.0001). The FVRA was significantly greater in the sCM-I group than the aCM-I and healthy control groups (59.3° vs 41.8° vs 45.2°, p < 0.0001). No difference was observed between aCM-I patients and healthy controls (p = 0.347). ROC analysis indicated that an FVRA of 65° had a specificity of 93% and a sensitivity of 50%, with a positive predictive value of 76% for brainstem dysfunction. FVRA > 65° was more predictive of brainstem dysfunction (OR 5.058, 95% CI 1.845–13.865, p = 0.002) than tonsillar herniation > 10 mm (OR 2.564, 95% CI 1.050–6.258, p = 0.039), although increasing age was also associated with brainstem dysfunction (OR 1.045, 95% CI 1.011–1.080, p = 0.009). A clival canal angle < 140° (p = 0.793) and obex below the foramen magnum (p = 0.563) had no association with brainstem dysfunction. CONCLUSIONS The authors identified a novel radiographic measure, the FVRA, that can be used to assess fourth ventricular bowing in CM-I and is more predictive of brainstem dysfunction than tonsillar herniation. The FVRA is easy to measure, has excellent interrater variability, and can be a reliable universal radiographic measure. The FVRA will be useful in further describing CM-I radiographically and clinically by identifying patients more likely to be symptomatic as a result of brainstem dysfunction.


Author(s):  
Julio Pascual ◽  
Peter van den Berg

Cough headache exists in a primary and secondary form. The latter is due to tonsillar descent or, more rarely, to other space-occupying lesions in the posterior fossa/foramen magnum. Up to 40% of patients have an underlying structural lesion. Most patients with primary cough headache respond to indomethacin and suboccipital craniectomy with posterior fossa reconstruction can relieve cough headache in Chiari type I malformation.


2020 ◽  
Vol 6 (2) ◽  
pp. 57-66
Author(s):  
Varun Aggarwal ◽  
◽  
Navodhya Jindal ◽  
Seema Rohilla ◽  
Hitesh Hitesh ◽  
...  

Background and Aim: Chiari I malformation(CIM) is defined as descent of cerebellar tonsils 5mm or more below the foramen magnum, with or without associated syrinx. Degree of tonsillar descent has a poor correlation with the progression of disease and symptomatology. Abnormal CSF dynamics at foramen magnum is the main pathophysiological factor responsible for the progression of tonsillar descent, syrinx formation and hence symptomatology. The aim of this study is to correlate CSF dynamic changes with the clinicoradiological profile of CIM patients. Methods and Materials/Patients: A prospective longitudinal study was done in 25 patients of CIM out of which 24 patients underwent standard midline suboccipital craniectomy with augmented duraplasty and 1 patient had ventriculoperitoneal shunt surgery for hydrocephalus. CSF flow study was done in sagittal as well as in axial sections at the level of foramen magnum using cine flow magnetic resonance imaging (MRI). Clinical and radiological assessment in reference to CSF flow parameters was done before and after decompression surgery. Results: After suboccipital decompression 23 out of 24 patients had relief in their symptoms and 1 patient had progressive syringomyelia. Postoperative MRI scan at 3months showed round shaped tonsils in all 24 patients. Ten out of 11 patients with syrinx had reduction in diameter of syrinx cavity. Peak CSF flow velocities reduced significantly (p value < 0.05) in the postoperative period and correlated well with the clinicoradiological improvement. Conclusion: Abnormal CSF flow dynamics is responsible for the progression of disease and symptomatology in CIM patients. Cine flow MRI is a useful tool in the management of CIM patients both for proper selection of surgical candidates and in post-operative follow-up.


2017 ◽  
Vol 19 (5) ◽  
pp. 511-517 ◽  
Author(s):  
Siri Sahib S. Khalsa ◽  
Alan Siu ◽  
Tiffani A. DeFreitas ◽  
Justin M. Cappuzzo ◽  
John S. Myseros ◽  
...  

OBJECTIVEPrevious studies have indicated an association of Chiari malformation Type I (CM-I) and a small posterior fossa. Most of these studies have been limited by 2D quantitative methods, and more recent studies utilizing 3D methodologies are time-intensive with manual segmentation. The authors sought to develop a more automated tool to calculate the 3D posterior fossa volume, and correlate its changes after decompression with surgical outcomes.METHODSA semiautomated segmentation program was developed, and used to compare the pre- and postoperative volumes of the posterior cranial fossa (PCF) and the CSF spaces (cisterna magna, prepontine cistern, and fourth ventricle) in a cohort of pediatric patients with CM-I. Volume changes were correlated with postoperative symptomatic improvements in headache, syrinx, tonsillar descent, cervicomedullary kinking, and overall surgical success.RESULTSForty-two pediatric patients were included in this study. The mean percentage increase in PCF volume was significantly greater in patients who showed clinical improvement versus no improvement in headache (5.89% vs 1.54%, p < 0.05) and tonsillar descent (6.52% vs 2.57%, p < 0.05). Overall clinical success was associated with a larger postoperative PCF volume increase (p < 0.05). These clinical improvements were also significantly associated with a larger increase in the volume of the cisterna magna (p < 0.05). The increase in the caudal portion of the posterior fossa volume was also larger in patients who showed improvement in syrinx (6.63% vs 2.58%, p < 0.05) and cervicomedullary kinking (9.24% vs 3.79%, p < 0.05).CONCLUSIONSA greater increase in the postoperative PCF volume, and specifically an increase in the cisterna magna volume, was associated with a greater likelihood of clinical improvements in headache and tonsillar descent in patients with CM-I. Larger increases in the caudal portion of the posterior fossa volume were also associated with a greater likelihood of improvement in syrinx and cervicomedullary kinking.


2016 ◽  
Vol 126 (6) ◽  
pp. 1934-1940 ◽  
Author(s):  
Davis G. Taylor ◽  
Panagiotis Mastorakos ◽  
John A. Jane ◽  
Edward H. Oldfield

OBJECTIVEA subset of patients with Chiari I malformation demonstrate patent subarachnoid spaces around the cerebellum, indicating that reduced posterior fossa volume alone does not account for tonsillar descent. The authors distinguish two subsets of Chiari I malformation patients based on the degree of “posterior fossa crowdedness” on MRI.METHODSTwo of the coauthors independently reviewed the preoperative MR images of 49 patients with Chiari I malformation and categorized the posterior fossa as “spacious” or “crowded.” Volumetric analysis of posterior fossa structures was then performed using open-source DICOM software. The preoperative clinical and imaging features of the two groups were compared.RESULTSThe posterior fossae of 25 patients were classified as spacious and 20 as crowded by both readers; 4 were incongruent. The volumes of the posterior fossa compartment, posterior fossa tissue, and hindbrain (posterior fossa tissue including herniated tonsils) were statistically similar between the patients with spacious and crowed subtypes (p = 0.33, p = 0.17, p = 0.20, respectively). However, patients in the spacious and crowded subtypes demonstrated significant differences in the ratios of posterior fossa tissue to compartment volumes as well as hindbrain to compartment volumes (p = 0.001 and p = 0.0004, respectively). The average age at surgery was 29.2 ± 19.3 years (mean ± SD) and 21.9 ± 14.9 years for spacious and crowded subtypes, respectively (p = 0.08). Syringomyelia was more prevalent in the crowded subtype (50% vs 28%, p = 0.11).CONCLUSIONSThe authors' study identifies two subtypes of Chiari I malformation, crowded and spacious, that can be distinguished by MRI appearance without volumetric analysis. Earlier age at surgery and presence of syringomyelia are more common in the crowded subtype. The presence of the spacious subtype suggests that crowdedness alone cannot explain the pathogenesis of Chiari I malformation in many patients, supporting the need for further investigation.


Sign in / Sign up

Export Citation Format

Share Document