north pacific subtropical countercurrent
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 816
Author(s):  
Jianxiang Sun ◽  
Suping Zhang ◽  
Christopher J. Nowotarski ◽  
Yuxi Jiang

In the winter and summer North Pacific Subtropical Countercurrent region, the atmospheric responses to 20,000+ mesoscale oceanic eddies (MOEs) are examined using satellite and reanalysis data from 1999 to 2013. The composite results indicate that surface wind speed, cloud, and precipitation anomalies are positively correlated with sea surface temperature anomalies in both seasons. The surface wind speed anomalies and convective precipitation anomalies show dipolar structures centering on MOEs in winter and on unipolar structures in summer. In both seasons, the vertical mixing mechanism plays an obvious role in the atmospheric responses to MOEs. In addition, the distributions of sea level pressure anomalies in winter reflects the effects of the pressure adjustment mechanism. Due to the seasonal variations in the atmospheric background state and the MOEs, the sensitivities of surface wind speeds, clouds, and precipitation responses to MOEs in summer are over 30% higher than those in winter.


2014 ◽  
Vol 44 (3) ◽  
pp. 818-833 ◽  
Author(s):  
Y.-L. Chang ◽  
L.-Y. Oey

Abstract The North Pacific Subtropical Countercurrent (STCC) has a weak eastward velocity near the surface, but the region is populated with eddies. Studies have shown that the STCC is baroclinically unstable with a peak growth rate of 0.015 day−1 in March, and the ~60-day growth time has been used to explain the peak eddy kinetic energy (EKE) in May observed from satellites. It is argued here that this growth time from previously published normal-mode instability analyses is too slow. Growth rates calculated from an initial-value problem without the normal-mode assumption are found to be 1.5 to 2 times faster and at shorter wavelengths, due to the existence of (i) nonmodal solutions and (ii) sea surface temperature front in the mixed layer in winter. At interannual time scales it is shown that because of rapid surface adjustments, the STCC geostrophic shear, hence also the instability growth, is approximately in phase with surface forcing, leading to EKE modulation that peaks approximately 10 months later. However, the EKE can only be partially explained by this mechanism of modulation by baroclinic instability. It is suggested that the unexplained variance may be caused additionally by modulation of the EKE by dissipation.


Sign in / Sign up

Export Citation Format

Share Document