eddy generation
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
pp. 134
Author(s):  
Igor E. Kozlov ◽  
Oksana A. Atadzhanova

Here we investigate the intensity of eddy generation and their properties in the marginal ice zone (MIZ) regions of Fram Strait and around Svalbard using spaceborne synthetic aperture radar (SAR) data from Envisat ASAR and Sentinel-1 in winter 2007 and 2018. Analysis of 2039 SAR images allowed identifying 4619 eddy signatures. The number of eddies detected per image per kilometer of MIZ length is similar for both years. Submesoscale and small mesoscale eddies dominate with cyclones detected twice more frequently than anticyclones. Eddy diameters range from 1 to 68 km with mean values of 6 km and 12 km over shallow and deep water, respectively. Mean eddy size grows with increasing ice concentration in the MIZ, yet most eddies are detected at the ice edge and where the ice concentration is below 20%. The fraction of sea ice trapped in cyclones (53%) is slightly higher than that in anticyclones (48%). The amount of sea ice trapped by a single ‘mean’ eddy is about 40 km2, while the average horizontal retreat of the ice edge due to eddy-induced ice melt is about 0.2–0.5 km·d–1 ± 0.02 km·d–1. Relation of eddy occurrence to background currents and winds is also discussed.


Author(s):  
Xiaolong Yu ◽  
Jörn Callies ◽  
Roy Barkan ◽  
Kurt L. Polzin ◽  
Eleanor E. Frajka-Williams ◽  
...  

Abstract Mesoscale eddies contain the bulk of the ocean’s kinetic energy (KE), but fundamental questions remain on the cross-scale KE transfers linking eddy generation and dissipation. The role of submesoscale flows represents the key point of discussion, with contrasting views of submesoscales as either a source or a sink of mesoscale KE. Here, the first observational assessment of the annual cycle of the KE transfer between mesoscale and submesoscale motions is performed in the upper layers of a typical open-ocean region. Although these diagnostics have marginal statistical significance and should be regarded cautiously, they are physically plausible and can provide a valuable benchmark for model evaluation. The cross-scale KE transfer exhibits two distinct stages, whereby submesoscales energize mesoscales in winter and drain mesoscales in spring. Despite this seasonal reversal, an inverse KE cascade operates throughout the year across much of the mesoscale range. Our results are not incompatible with recent modeling investigations that place the headwaters of the inverse KE cascade at the submesoscale, and that rationalize the seasonality of mesoscale KE as an inverse cascade-mediated response to the generation of submesoscales in winter. However, our findings may challenge those investigations by suggesting that, in spring, a downscale KE transfer could dampen the inverse KE cascade. An exploratory appraisal of the dynamics governing mesoscale-submesoscale KE exchanges suggests that the upscale KE transfer in winter is underpinned by mixed-layer baroclinic instabilities, and that the downscale KE transfer in spring is associated with frontogenesis. Current submesoscale-permitting ocean models may substantially understate this downscale KE transfer, due to the models’ muted representation of frontogenesis.


Author(s):  
Bo Qiu ◽  
Shuiming Chen

AbstractA unique characteristic by the Kuroshio off the southern coast of Japan is its bimodal path variations. In contrast to its straight path that follows coastline, the Kuroshio takes a large meander (LM) path when its axis detours southward by as much as 300 km. Since 1950, eight Kuroshio LM events took place and their occurrences appeared random. By synthesizing available in-situ/satellite observations and atmospheric reanalysis product, this study seeks to elucidate processes conducive for the LM occurrence. We find both changes in the inflow Kuroshio transport from the East China Sea and in the downstream Kuroshio Extension dynamic state are not determinant factors. Instead, intense anticyclonic eddies with transport > 20 Sv emanated from the Subtropical Countercurrent (STCC) are found to play critical roles in interacting with Kuroshio path perturbations southeast of Kyushu that generate positive relative vorticities along the coast and lead the nascent path perturbation to form a LM. Occurrence of this intense cyclonic{anticyclonic eddy interaction is favored when surface wind forcing over the STCC is anticyclonic during the positive phasing of Pacific decadal oscillations (PDOs). Such wind forcing strengthens the meridional Ekman flux convergence and enhances eddy generation by the STCC, and seven of the past eight LM events are found to be preceded by 1 ~ 2 years by the persistent anticyclonic wind forcings over the STCC. Rather than a fully random phenomenon, we posit that the LM occurrence is regulated by regional wind forcing with a positive PDO imprint.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012022
Author(s):  
L A Petrenko ◽  
I E Kozlov

Abstract Based on analysis of spaceborne synthetic aperture data (SAR), acquired in summer of 2007 over Fram Strait and around Svalbard, we investigate spatial and temporal variability of the ice edge and generation of eddies in the marginal ice zone. During the season, the ice-water boundary nonuniformly moves along its entire length with the overall width of the ice edge displacement ranging from 30 to 220 km. The ice edge movement is often accompanied by generation of eddies and filaments peaking in August. Analysis of the data serves to find out over 2000 distinct MIZ eddies with a clear dominance of cyclones (78%). In July the detected eddies are predominantly formed along the ice edge, in August most of them are generated inside the MIZ, while in September their numbers along the ice edge and within the MIZ are similar. Larger eddies (10-20 km in diameter) are found over deep Fram Strait and the Greenland Sea shelf, while smaller eddies (~5 km) are observed in coastal regions around Svalbard.


2021 ◽  
Vol 13 (5) ◽  
pp. 1017
Author(s):  
Zhanjiu Hao ◽  
Zhenhua Xu ◽  
Ming Feng ◽  
Qun Li ◽  
Baoshu Yin

Mesoscale eddies are ubiquitous in the world ocean and well researched both globally and regionally, while their properties and distributions across the whole Indonesian Seas are not yet fully understood. This study investigates for the first time the spatiotemporal variations and generation mechanisms of mesoscale eddies across the whole Indonesian Seas. Eddies are detected from altimetry sea level anomalies by an automatic identification algorithm. The Sulu Sea, Sulawesi Sea, Maluku Sea and Banda Sea are the main eddy generation regions. More than 80% of eddies are short-lived with a lifetime below 30 days. The properties of eddies exhibit high spatial inhomogeneity, with the typical amplitudes and radiuses of 2–6 cm and 50–160 km, respectively. The most energetic eddies are observed in the Sulawesi Sea and Seram Sea. Eddies feature different seasonal cycles between anticyclonic and cyclonic eddies in each basin, especially given that the average latitude of the eddy centroid has inverse seasonal variations. About 48% of eddies in the Sulawesi Sea are highly nonlinear, which is the case for less than 30% in the Sulu Sea and Banda Sea. Instability analysis is performed using high-resolution model outputs from Bluelink Reanalysis to assess mechanisms of eddy generation. Barotropic instability of the mean flow dominates eddy generation in the Sulu Sea and Sulawesi Sea, while baroclinic instability is slightly more in the Maluku Sea and Banda Sea.


2021 ◽  
Author(s):  
Habib Micaël Aguedjou ◽  
Alexis Chaigneau ◽  
Isabelle Dadou ◽  
Yves Morel ◽  
Cori Pegliasco ◽  
...  

<p>Potential vorticity (PV) is a key parameter to analyze the generation and dynamics of mesoscale eddies. Numerical studies have shown how adiabatic (displacement of particles within a background gradient of PV) and diabatic (diapycnal mixing and friction) processes can be involved in the generation of localized PV anomalies and vortices. Such processes are however difficult to evaluate in the ocean because PV is difficult to evaluate at mesoscale. In this study, we argue that qualitative analysis can be done, based on the link between PV anomalies and isopycnal temperature/salinity anomalies (<em>Ɵ’</em><em>/S’</em>). Indeed, in the ocean, eddies created by diapycnal mixing or isopycnal advection of water-masses, are associated with PV anomalies and significant isopycnal <em>Ɵ’</em><em>/S’</em>. In contrast, eddies created by friction are associated with PV anomalies but without isopycnal <em>Ɵ’</em><em>/S’</em>. In this study, based on 18 years of satellite altimetry data and vertical <em>Ɵ</em><em>/S</em> profiles acquired by Argo floats, we analyze the isopycnal <em>Ɵ’</em><em>/S’</em> within new-born eddies in the tropical Atlantic Ocean (TAO) and discuss the possible mechanisms involved in their generation. Our results show that on density-coordinates system, both anticyclonic (AEs) and cyclonic (CEs) eddies can exhibit positive, negative, or non-significant <em>Ɵ’</em><em>/S’</em>. Almost half of the sampled eddies do not have significant <em>Ɵ’</em><em>/S’ </em>at their generation site, indicating that frictional effects probably play a significant role in the generation of their PV anomalies. The other half of eddies, likely generated by diapycnal mixing or isopycnal advection, exhibits significant positive or negative anomalies with typical Ɵ’ of ±0.5°C. More than 70% of these significant eddies are subsurface-intensified, having their cores below the seasonal pycnocline. Refined analyses of the vertical structure of new-born eddies in three selected subregions of the TAO where the strongest anomalies were observed, show the dominance of cold (warm, respectively) subsurface AEs (CEs) likely due to isopycnal advection of large scale PV and temperature.</p>


2021 ◽  
Vol 12 (1) ◽  
pp. 233-251
Author(s):  
Gabriele Messori ◽  
Nili Harnik ◽  
Erica Madonna ◽  
Orli Lachmy ◽  
Davide Faranda

Abstract. Atmospheric jet streams are typically separated into primarily “eddy-driven” (or polar-front) jets and primarily “thermally driven” (or subtropical) jets. Some regions also display “merged” jets, resulting from the (quasi-)collocation of the regions of eddy generation with the subtropical jet. The different locations and driving mechanisms of these jets arise from very different underlying mechanisms and result in very different jet characteristics. Here, we link the current understanding of dynamical jet maintenance mechanisms, mostly arising from conceptual or idealized models, to the phenomena observed in reanalysis data. We specifically focus on developing a unitary analysis framework grounded in dynamical systems theory, which may be applied to both idealized models and reanalysis, as well as allowing for direct intercomparison. Our results illustrate the effectiveness of dynamical systems indicators to diagnose jet regimes.


2021 ◽  
Author(s):  
Habib Micaël Agnédjo AGUEDJOU ◽  
Alexis Chaigneau ◽  
Isabelle DADOU ◽  
Yves Morel ◽  
Cori Pegliasco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document