momentum conservation equation
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Yuanqing Wu ◽  
Jisheng Kou ◽  
Shuyu Sun ◽  
Yu-Shu Wu

Matrix acidization is an important technique used to enhance oil production at the tertiary recovery stage, but its numerical simulation has never been verified. From one of the earliest models, i.e., the two-scale model (Darcy framework), the Darcy–Brinkman–Forchheimer (DBF) framework is developed by adding the Brinkman term and Forchheimer term to the momentum conservation equation. However, in the momentum conservation equation of the DBF framework, porosity is placed outside of the time derivation term, which prevents a good description of the change in porosity. Thus, this work changes the expression so that the modified momentum conservation equation can satisfy Newton’s second law. This modified framework is called the improved DBF framework. Furthermore, based on the improved DBF framework, a thermal DBF framework is given by introducing an energy balance equation to the improved DBF framework. Both of these frameworks are verified by former works through numerical experiments and chemical experiments in labs. Parallelization to the complicated framework codes is also realized, and good scalability can be achieved.


Robotica ◽  
2011 ◽  
Vol 30 (5) ◽  
pp. 755-771 ◽  
Author(s):  
Wenfu Xu ◽  
Yu Liu ◽  
Yangsheng Xu

SUMMARYIn this paper, autonomous motion control approaches to generate the coordinated motion of a dual-arm space robot for target capturing are presented. Two typical cases are studied: (a) The coordinated dual-arm capturing of a moving target when the base is free-floating; (b) one arm is used for target capturing, and the other for keeping the base fixed inertially. Instead of solving all the variables in a unified differential equation, the solution equation of the first case is simplified into two sub-equations and practical methods are used to solve them. Therefore, the computation loads are largely reduced, and feasible trajectories can be determined. For the second case, we propose to deal with the linear and angular momentums of the system separately. The linear momentum conservation equation is used to design the configuration and the mounted pose of a balance arm to keep the inertial position of the base's center of mass, and the angular momentum conservation equation is used to estimate the desired momentum generated by the reaction wheels for maintaining the inertial attitude of the base. Finally, two typical tasks are simulated. Simulation results verify the corresponding approaches.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
A. Regev ◽  
S. Hassid

The analysis of density jumps in two-layer channel flows of miscible fluids controlled by a downstream obstruction, in which one of the layers is infinitely deep and at rest, is extended to consider the dependence of its features on its streamwise dimension. The momentum conservation equation in the entrainment and roller regions, and the energy conservation equation after the jump are corrected to account for friction. The streamwise coordinate is related to the increase in the density layer height through a linear expression derived from CFD calculations. Three regimes are distinguished: (1) for short distances from the origin to the obstruction, only an entrainment region exists; (2) for medium distances, two regions can be distinguished, i.e., the entrainment region, and the roller region, in which no entrainment is assumed; and (3) for long distances, three regions can be distinguished—the entrainment, the roller, and the postjump regions, characterized by approximate energy conservation. It is shown that initially the dimensionless total entrainment ratio increases as the distance to the obstruction increases, until a roller region appears. A further increase in distance to the obstruction does not have a significant effect on the total entrainment, until the appearance of a postjump region, resulting in a gradual decrease in the total entrainment. These results are supported by numerical calculations using the FLUENT CFD software package, which are in good agreement with experimental results.


Author(s):  
Subir Bhattacharjee ◽  
Noor Al Quddus

Electrokinetic transport phenomena, such as electroosmosis, streaming potential, electrophoresis, and sedimentation potential, are central to many micro- and nano-channel flows. During continuum modeling of such phenomena, incorporation of the electrical body force term can make the fluid momentum conservation equation highly non-linear. This non-linearity is often ignored in small-scale electrokinetic flow modeling because of our implicit reliance on the linearity of the Stokes equations for low Reynolds number flows. In this paper, ramifications of this non-linear Stokes equation in electrokinetic flows will be described with examples of our recent studies on pressure driven flows through porous media for electrokinetic power generation, electroosmotic flow of charged entities in nanochannels, and flow of DNA through self-assembled porous media under pulsed electric fields.


2000 ◽  
Vol 123 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Antonio C. Bannwart

A theory for the stabilization of annular liquid-liquid flow (i.e., core-annular flow) in a horizontal pipe is proposed. Based upon the analysis of the momentum conservation equation in the cross section of the flow, including the effects of peripheral flow in the annulus and interfacial tension, an equation is obtained which describes the interface shape. Results for the height-to-width aspect ratio of the core are compared with laboratory measurements done by the author for a heavy oil-water core-annular flow. A criterion for stabilization of this interesting flow pattern is proposed.


Sign in / Sign up

Export Citation Format

Share Document