scholarly journals A General Self-Sacrifice Template Strategy to 3D Heteroatom-Doped Macroporous Carbon for High-Performance Potassium-Ion Hybrid Capacitors

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Junwei Li ◽  
Xiang Hu ◽  
Guobao Zhong ◽  
Yangjie Liu ◽  
Yaxin Ji ◽  
...  

AbstractPotassium-ion hybrid capacitors (PIHCs) tactfully combining capacitor-type cathode with battery-type anode have recently attracted increasing attentions due to their advantages of decent energy density, high power density, and low cost; the mismatches of capacity and kinetics between capacitor-type cathode and battery-type anode in PIHCs yet hinder their overall performance output. Herein, based on prediction of density functional theory calculations, we find Se/N co-doped porous carbon is a promising candidate for K+ storage and thus develop a simple and universal self-sacrifice template method to fabricate Se and N co-doped three-dimensional (3D) macroporous carbon (Se/N-3DMpC), which features favorable properties of connective hierarchical pores, expanded interlayer structure, and rich activity site for boosting pseudocapacitive activity and kinetics toward K+ storage anode and enhancing capacitance performance for the reversible anion adsorption/desorption cathode. As expected, the as-assembled PIHCs full cell with a working voltage as high as 4.0 V delivers a high energy density of 186 Wh kg−1 and a power output of 8100 W kg−1 as well as excellent long service life. The proof-of-concept PIHCs with excellent performance open a new avenue for the development and application of high-performance hybrid capacitors.

RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 19967-19975 ◽  
Author(s):  
Zhen-Kun Chen ◽  
Jun-Wei Lang ◽  
Ling-Yang Liu ◽  
Ling-Bin Kong

Freestanding NbN/graphene papers were used in Li-ion hybrid capacitors and exhibit high energy density and power density.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yanhua Li ◽  
Kui Xiao ◽  
Cong Huang ◽  
Jin Wang ◽  
Ming Gao ◽  
...  

Abstract Potassium-ion batteries (PIBs) are attractive for grid-scale energy storage due to the abundant potassium resource and high energy density. The key to achieving high-performance and large-scale energy storage technology lies in seeking eco-efficient synthetic processes to the design of suitable anode materials. Herein, a spherical sponge-like carbon superstructure (NCS) assembled by 2D nanosheets is rationally and efficiently designed for K+ storage. The optimized NCS electrode exhibits an outstanding rate capability, high reversible specific capacity (250 mAh g−1 at 200 mA g−1 after 300 cycles), and promising cycling performance (205 mAh g−1 at 1000 mA g−1 after 2000 cycles). The superior performance can be attributed to the unique robust spherical structure and 3D electrical transfer network together with nitrogen-rich nanosheets. Moreover, the regulation of the nitrogen doping types and morphology of NCS-5 is also discussed in detail based on the experiments results and density functional theory calculations. This strategy for manipulating the structure and properties of 3D materials is expected to meet the grand challenges for advanced carbon materials as high-performance PIB anodes in practical applications.


RSC Advances ◽  
2019 ◽  
Vol 9 (30) ◽  
pp. 17308-17317 ◽  
Author(s):  
Guang Zhu ◽  
Guangzhen Zhao ◽  
Junyou Shi ◽  
Wei Ou-Yang

N,O co-doped 3D HPC derived from soybean dregs was prepared by a one-step method and displays an amazingly high energy density of 22 W h kg−1 (450 W kg−1) using 1 M Na2SO4 solution.


Author(s):  
Zhenyu Xie ◽  
Jiannian Xia ◽  
Daping Qiu ◽  
Jinying Wei ◽  
Min Li ◽  
...  

Potassium ion hybrid capacitors (PIHCs) meeting the high power density of capacitors and high energy density of batteries are seen as one of the most promising energy storage devices. However,...


2020 ◽  
Vol 5 (12) ◽  
pp. 1586-1595
Author(s):  
Xiuqi Li ◽  
Maoxin Chen ◽  
Lei Wang ◽  
Hanjiao Xu ◽  
Jiang Zhong ◽  
...  

Novel N-doped carbon nanotubes (NCNTs) were synthesized as an anode for high energy density and power density potassium-ion hybrid capacitors.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


2021 ◽  
Author(s):  
Xiaowen Fan ◽  
Penggao Liu ◽  
Baixue Ouyang ◽  
Ruizheng Cai ◽  
Xinxin Chen ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Chenxi Gao ◽  
Jiawei Wang ◽  
Yuan Huang ◽  
Zixuan Li ◽  
Jiyan Zhang ◽  
...  

Zinc-ion batteries (ZIBs) have attracted significant attention owing to their high safety, high energy density, and low cost. ZIBs have been studied as a potential energy device for portable and...


Sign in / Sign up

Export Citation Format

Share Document