lower colorado river
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 39)

H-INDEX

28
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Brendan L. Lavy ◽  
Russell C. Weaver ◽  
Ronald R. Hagelman

In water-stressed river basins with growing urban populations, conflicts over water resources have emerged between urban and agricultural interests, as managerial interventions occur with little warning and tend to favor urban over agricultural water uses. This research documents changes in water use along an urban-to-agricultural gradient to examine whether it is possible to leverage temporal fluctuations in key quantitative data indicators to detect periods in which we could expect substantive managerial interventions in water resource management. We employ the change point model (CPM) framework to locate shifts in water use, climate-related indicators, lake and river characteristics, and agricultural trends across urban and agricultural counties in the lower Colorado River basin of Texas. Three distinctive groupings of change points appear. Increasing water use by urban counties and a shift in local climate conditions characterize the first period. Declines in agricultural counties’ water use and crop production define the second. Drops in lake levels, lower river discharge, and an extended drought mark the third. We interpret the results relative to documented managerial intervention events and show that managerial interventions occur during and after significant change points. We conclude that the CPM framework may be used to monitor the optimal timing of managerial interventions and their effects to avoid negative outcomes.


2021 ◽  
pp. SP523-2021-57
Author(s):  
Rebecca J. Dorsey ◽  
Juan Carlos Braga ◽  
Kevin Gardner ◽  
Kristin McDougall ◽  
Brennan O'Connell

AbstractMarine straits and seaways are known to host a wide range of sedimentary processes and products, but the role of marine connections in the development of large river systems remains little studied. This study explores a hypothesis that shallow marine waters flooded the lower Colorado River valley at ∼ 5 Ma along a fault-controlled former tidal straight, soon after the river was first integrated to the northern Gulf of California. The upper bioclastic member of the southern Bouse Formation provides a critical test of this hypothesis. The upper bioclastic member contains wave ripple-laminated bioclastic grainstone with minor red mudstone, pebbly grainstone with HCS-like stratification and symmetrical gravelly ripples, and calcareous-matrix conglomerate. Fossils include upward-branching segmented coralline-like red algae with no known modern relatives but confirmed as marine calcareous algae, echinoid spines, barnacles, shallow marine foraminifers, clams, and serpulid worm tubes. These results provide evidence for deposition in a shallow marine bay or estuary seaward of the transgressive backstepping Colorado River delta. Tsunamis generated by seismic and meteorologic sources likely produced the HCS-like and wave-ripple cross-bedding in poorly-sorted gravelly grainstone. Marine waters inundated a former tidal strait within a fault-bounded tectonic lowland that connected the lower Colorado River to the Gulf of California. Delta backstepping and transgression resulted from a decrease in sediment output due to sediment trapping in upstream basins and relative sea-level rise produced by regional tectonic subsidence.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5740426


Geosphere ◽  
2021 ◽  
Author(s):  
Jon E. Spencer ◽  
Kurt N. Constenius ◽  
David L. Dettman ◽  
Kenneth J. Domanik

The cause of Cenozoic uplift of the Colorado Plateau is one of the largest remaining problems of Cordilleran tectonics. Difficulty in discriminating between two major classes of uplift mechanisms, one related to lithosphere modification by low-angle subduction and the other related to active mantle processes following termination of subduction, is hampered by lack of evidence for the timing of uplift. The carbonate member of the Pliocene Bouse Formation in the lower Colorado River Valley southwest of the Colorado Plateau has been interpreted as estuarine, in which case its modern elevation of up to 330 m above sea level would be important evidence for late Cenozoic uplift. The carbonate member includes laminated marl and claystone interpreted previously in at least one locality as tidal, which is therefore of marine origin. We analyzed lamination mineralogy, oxygen and carbon isotopes, and thickness variations to discriminate between a tidal versus seasonal origin. Oxygen and carbon isotopic analysis of two laminated carbonate samples shows an alternating pattern of lower δ18O and δ13C associated with micrite and slightly higher δ18O and δ13C associated with siltstone, which is consistent with seasonal variation. Covariation of alternating δ18O and δ13C also indicates that post-depositional chemical alteration did not affect these samples. Furthermore, we did not identify any periodic thickness variations suggestive of tidal influence. We conclude that lamination characteristics indicate seasonal genesis in a lake rather than tidal genesis in an estuary and that the laminated Bouse Formation strata provide no constraints on the timing of Colorado Plateau uplift.


2021 ◽  
Author(s):  
Rebecca Dorsey ◽  
Juan Carlos Braga Alarcón ◽  
Kevin Gardner ◽  
Brennan O'Connell

Marine straits and seaways are known to host a wide range of sedimentary processes and products, but the role of marine connections in the development of large river systems remains little studied. This study explores a hypothesis that shallow marine waters flooded the lower Colorado River valley at ~ 5 Ma along a fault-controlled former tidal straight, soon after the river was first integrated to the northern Gulf of California. The upper bioclastic member of the southern Bouse Formation provides a critical test of this hypothesis. The upper bioclastic member contains wave ripple-laminated bioclastic grainstone with minor red mudstone, pebbly grainstone with HCS-like stratification and symmetrical gravelly ripples, and calcareous-matrix conglomerate. Fossils include upward-branching segmented coralline-like red algae with no known modern relatives but confirmed as marine calcareous algae, echinoid spines, barnacles, shallow marine foraminifers, clams, and serpulid worm tubes. These results provide evidence for deposition in a shallow marine bay or estuary seaward of the transgressive backstepping Colorado River delta. Tsunamis generated by seismic and meteorologic sources likely produced the HCS-like and wave-ripple cross-bedding in poorly-sorted gravelly grainstone. Marine waters inundated a former tidal strait within a fault-bounded tectonic lowland that connected the lower Colorado River to the Gulf of California. Delta backstepping and transgression resulted from a decrease in sediment output due to sediment trapping in upstream basins and relative sea-level rise produced by regional tectonic subsidence.


Geology ◽  
2021 ◽  
Vol 49 (9) ◽  
pp. e532-e533
Author(s):  
R.S. Crow ◽  
J. Schwing ◽  
K.E. Karlstrom ◽  
M. Heizler ◽  
P.A. Pearthree ◽  
...  

Geology ◽  
2021 ◽  
Vol 49 (9) ◽  
pp. e531-e531
Author(s):  
Rebecca J. Dorsey ◽  
Gary J. Axen ◽  
Martin J. Grove ◽  
Bernard A. Housen ◽  
George Jefferson ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 1659
Author(s):  
Cynthia L. Norton ◽  
Matthew P. Dannenberg ◽  
Dong Yan ◽  
Cynthia S. A. Wallace ◽  
Jesus R. Rodriguez ◽  
...  

The Colorado River Basin (CRB) includes seven states and provides municipal and industrial water to millions of people across all major southwestern cities both inside and outside the basin. Agriculture is the largest part of the CRB economy and crop production depends on irrigation, which accounts for about 74% of the total water demand cross the region. A better understanding of irrigation water demands is critically needed as temperatures continue to rise and drought intensifies, potentially leading to water shortages across the region. Yet, past research on irrigation dynamics has generally utilized relatively low spatiotemporal resolution datasets and has often overlooked the relationship between climate and management decisions such as land fallowing, i.e., the practice of leaving cultivated land idle for a growing season. Here, we produced annual estimates of fallow and active cropland extent at high spatial resolution (30 m) from 2001 to 2017 by applying the fallow-land algorithm based on neighborhood and temporal anomalies (FANTA). We specifically focused on diverse CRB agricultural regions: the lower Colorado River planning (LCRP) area and the Pinal and Phoenix active management areas (PPAMA). Utilizing ground observations collected in 2014 and 2017, we found an overall classification accuracy of 88.9% and 87.2% for LCRP and PPAMA, respectively. We then quantified how factors such as climate, district water rights, and market value influenced: (1) annual fallow and active cropland extent and (2) annual cropland productivity, approximated by integrated growing season NDVI (iNDVI). We found that for the LCRP, a region of winter cropping and senior (i.e., preferential) water rights, active cropland productivity was positively correlated with cool-season average vapor pressure deficit (R = 0.72; p < 0.01). By contrast, for the PPAMA, a region of summer cropping and junior water rights, annual fallow and active cropland extent was positively correlated with cool-season aridity (precipitation/potential evapotranspiration) (R = 0.46; p < 0.05), and active cropland productivity was positively correlated with warm-season aridity (precipitation/potential evapotranspiration) (R = 0.42; p < 0.01). We also found that PPAMA cropland productivity was more sensitive to aridity when crop prices were low, potentially due to the influence of market value on management decisions. Our analysis highlights how biophysical (e.g., temperature and precipitation) and socioeconomic (e.g., water rights and crop market value) factors interact to explain seasonal patterns of cropland extent, water use and productivity. These findings indicate that increasing aridity across the region may result in reduced cropland productivity and increased land fallowing for some regions, particularly those with junior water rights.


Sign in / Sign up

Export Citation Format

Share Document