scholarly journals Mechanism and Optimization of a Novel Automobile Pneumatic Suspension Based on Dynamic Analysis

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2232
Author(s):  
Zhibo Sun ◽  
Yan Shi ◽  
Na Wang ◽  
Jian Zhang ◽  
Yixuan Wang ◽  
...  

Pneumatic suspension is the most significant subsystem for an automobile. In this paper, a simplified and novel pneumatic spring structure with only a conical rubber surface is presented and designed to reduce the influence of external factors besides the pneumatic. The nonlinear stiffness of the pneumatic spring is analyzed based on the ideal gas model and material mechanics. Natural frequency analysis and the transmission rate of the pneumatic suspension are obtained as two effect criteria for the dynamic model. The vibration isolation system platform is established in both simulation and prototype tests. With the results from the simulation, the rules of the pneumatic suspension are analyzed, and the optimal function of mass and pressure is achieved. The experiment results show the analysis of the simulation to be effective. This achievement will become an important basis for future research concerning precise active control of the pneumatic suspension in vehicles.

2011 ◽  
Vol 383-390 ◽  
pp. 130-135 ◽  
Author(s):  
Fu Mao Wang ◽  
Chang Guo Wang ◽  
Lan Lan Guo ◽  
Bang Chun Wen ◽  
Yong Li

In this paper, based on the theory of double layered vibration isolation, the finite element dynamic model of floating raft vibration isolation system has been established for the project of vibration and noise control in a heat exchange station. The dynamic model of single pump is simplified an elastic cylinder based on the principle of equivalent parameters, and the elastic raft frame is used of steel structure. The dynamic characteristics of the system is analyzed by used of ANSYS with SOLID45 unit and COMBIN14 spring-damper unit, which provide an important basis for the engineering design of floating raft isolation system with pumping units.


2013 ◽  
Vol 397-400 ◽  
pp. 295-303 ◽  
Author(s):  
Fu Niu ◽  
Ling Shuai Meng ◽  
Wen Juan Wu ◽  
Jing Gong Sun ◽  
Wei Hua Su ◽  
...  

The quasi-zero-stiffness vibration isolation system has witnessed significant development due to the pressing demands for low frequency and ultra-low frequency vibration isolation. In this study, the isolation theory and the characteristic of the quasi-zero-stiffness vibration isolation system are illustrated. Based on its implementation mechanics, a comprehensive assessment of recent advances of the quasi-zero-stiffness vibration isolation system is presented. The future research directions are finally prospected.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


2016 ◽  
Vol 87 (1) ◽  
pp. 633-646 ◽  
Author(s):  
Xinlong Wang ◽  
Jiaxi Zhou ◽  
Daolin Xu ◽  
Huajiang Ouyang ◽  
Yong Duan

2012 ◽  
Vol 30 (6) ◽  
pp. 063201 ◽  
Author(s):  
Katsuya Iwaya ◽  
Ryota Shimizu ◽  
Akira Teramura ◽  
Seiji Sasaki ◽  
Toru Itagaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document