Stochastic natural frequency analysis of varying diameter functionally graded material pipe conveying fluid

2021 ◽  
Vol 237 ◽  
pp. 109630
Author(s):  
Qing Guo ◽  
Yongshou Liu ◽  
Bingqian Chen ◽  
Yidu Zhang
2019 ◽  
Vol 889 ◽  
pp. 484-488
Author(s):  
Van Thuan Nguyen ◽  
Duy Liem Nguyen

This paper applies the stochastic finite element method (SFEM) to perform the natural frequency analysis of functionally graded material (FGM). It is assumed that the elastic modulus and width of the FGM beam vary along the thickness and width directions following exponential functions. The stochastic eigenvalue problem is solved independently by first-order perturbation and Monte Carlo simulation (MCS) method through changing elastic modulus as spatial randomness. The results show that the first-order perturbation method based SFEM produces a very close value to MCS method.


Author(s):  
Jiaquan Deng ◽  
Yongshou Liu ◽  
Zijun Zhang ◽  
Wei Liu

In this paper, the dynamic behaviors of a multi-span viscoelastic functionally graded material pipe conveying fluid are investigated by dynamic stiffness method. The material properties of the functionally graded material pipe are considered as graded distribution along the thickness direction according to a power-law. Several numerical examples are performed to study the effects of volume fraction exponent, fluid velocity, internal pressure, and internal damping on the stability and frequency response of the fluid-conveying functionally graded material pipe. It’s found that the viscoelastic functionally graded material pipe exhibits some special dynamic behaviors and it could increase the stability significantly when compared with the aluminum and steel pipes. The numerical results also demonstrate that by the introduction of the functionally graded material, the stiffness of the piping system could be modulated easily by designing the volume fraction function. Therefore, if the dominant frequency contents of the external loads are known, a preferable design of the functionally graded material pipe to reduce the vibration is possible.


2014 ◽  
Vol 21 (15) ◽  
pp. 3034-3046 ◽  
Author(s):  
Huijie Shen ◽  
Jihong Wen ◽  
Dianlong Yu ◽  
Xisen Wen

Author(s):  
Pawan Kumar ◽  
SP Harsha

Static and free vibration response analysis of a functionally graded piezoelectric material plate under thermal, electric, and mechanical loads is done in this study. The displacement field is acquired using the first-order shear deformation theory, and the Hamilton principle is applied to deduce the motion equations. Temperature-dependent material properties of the functionally graded material plate are used, and these properties follow the power-law distributions along the thickness direction. However, the properties of piezoelectric material layers are assumed to be independent of the electric field and temperature. Finite element formulation for the functionally graded piezoelectric material plate is done using the combined effect of mechanical and electrical loads. The effects of parameters like electrical loading, volume fraction exponent N, and temperature distribution on the static and free vibration characteristics of the functionally graded piezoelectric material square plate are analyzed and presented. Responses are obtained in terms of the centerline deflection, axial stress and the nondimensional natural frequency with various boundary conditions. It is observed that the centerline deflection and nondimensional natural frequency increases as exponent N increases. At the same time, the axial stress decreases with an increase in exponent N. The findings of the static and the free vibration analysis suggest the potential application of the functionally graded piezoelectric material plate in the piezoelectric actuator as well as for sensing deflection in bimorph.


2018 ◽  
Vol 18 (11) ◽  
pp. 1850138 ◽  
Author(s):  
Yueyang Han ◽  
Xiang Zhu ◽  
Tianyun Li ◽  
Yunyan Yu ◽  
Xiaofang Hu

An analytical approach for predicting the free vibration and elastic critical load of functionally graded material (FGM) thin cylindrical shells filled with internal pressured fluid is presented in this study. The vibration of the FGM cylindrical shell is described by the Flügge shell theory, where the internal static pressure is considered as the prestress term in the shell equations. The motion of the internal fluid is described by the acoustic wave equation. The natural frequencies of the FGM cylindrical shell under different internal pressures are obtained with the wave propagation method. The relationship between the internal pressure and the natural frequency of the cylindrical shell is analyzed. Then the linear extrapolation method is employed to obtain the elastic critical load of the FGM cylindrical shell from the condition that the increasing pressure has resulted in zero natural frequency. The accuracy of the present method is verified by comparison with the published results. The effects of gradient index, boundary conditions and structural parameters on the elastic critical load of the FGM cylindrical shell are discussed. Compared with the experimental and numerical analyses based on the external pressure, the present method is simple and easy to carry out.


Sign in / Sign up

Export Citation Format

Share Document