kinematic optimization
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 21)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yue Wu ◽  
Changchuan Xie ◽  
Yang Meng ◽  
Chao Yang

In recent years, there has been widespread interest in the design of microair vehicles (MAVs) for flapping flight with high-aspect ratio wings due to their high efficiency and energy savings. However, the flexibility of a flapping wing causes the aeroelastic effect, which remains a subject of investigation. Generally, existing research simulates active bending and twisting of flexible wings under the assumption of neglecting flapping inertia. In this research, the kinematic optimization of a bionic wing with passive deformation in forward flight while undergoing flapping and pitching is considered. To this end, a computational aeroelasticity framework, which includes the three-dimensional unsteady vortex lattice method (UVLM) and the Newmark-β method, is constructed for flapping flight. Under the assumption of linear elastic deformation, this tool is capable of simulating attached flows over a thin wing and capturing unsteady effects of wakes. A bionic numerical wing with an aspect ratio of 6.5, chord Reynolds number of 1.9 × 105, and reduced frequency less than 0.1 is investigated in kinematic optimization. The computational aeroelasticity framework is combined with a global optimization algorithm to identify the optimal kinematics that maximize the propulsive efficiency under the minimum average lift constraint. Two types of numerical wings, rigid wing and flexible wing, are considered here to compare the influence of deformation on the aerodynamics of the flapping wing. The results show that the aeroelastic effect, which increases the flapping amplitude, yields a significant improvement in terms of propulsive efficiency. In addition, the optimization algorithm maximizes the thrust efficiency while satisfying the required lift. Moreover, the optimal kinematics of both the rigid wing and the flexible wing reach the maximum flapping angle, which indicates that a larger range of motions is needed for optimal kinetics when loosening the boundary conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kui Xu ◽  
Yin Yin ◽  
Yixin Yang ◽  
Hong Nie ◽  
Xiaohui Wei

A dual-sidestay landing gear is prone to locking failure in the deployed state due to the restriction of movement between two sidestays. However, the principle of its locking movement still remains unclear. The present study is aimed at investigating the synchronous locking performance of the dual-sidestay landing gear based on the singularity and bifurcation theory. From the perspective of the kinematic mechanism, the reason for high sensitivity to structural dimensions in the locking process is explained, and the locked position is investigated by employing the numerical continuation method in the case of a single-sidestay landing gear. Afterwards, the reason for the locking failure of the dual-sidestay landing gear is analyzed, and a kinematic optimization method for the synchronous locking is proposed. The results reveal that the lock links must reach the lower overcenter singular point to fully lock the landing gear, and the singular point is sensitively affected by structural parameters. Owing to the different positions of singular points, the movements of fore and aft sidestays seriously restrict each other, causing locking failure of the dual-sidestay landing gear. The singular points of two sidestays can be optimized to be approximately identical, making their movements more coordinated.


Author(s):  
Mauricio Arredondo-Soto ◽  
Mario Garcia-Murillo ◽  
Agustin Vidal-Lesso ◽  
J. Jesús Cervantes-Sánchez ◽  
Hector A. Moreno

Abstract This paper presents a complete kinematic model of the tibiofemoral joint based on a RRPP + 4-SPS parallel mechanism, where R, P and S stands for revolute, prismatic and spherical joints respectively. The model accounts for the contact between tibia and femur, and the four major ligaments: Anterior Cruciate, Posterior Cruciate, Medial Collateral and Lateral Collateral, with anatomical significance in their length variations. An experimental flexion passive motion task is performed, and the kinematic model is tested to determine its capability to reproduce the workspace of the motion task. In addition, an optimization process is performed to simulate prescribed ligament length variations during the motion task. The proposed kinematic model is capable to reproduce with high accuracy an experimental three-dimensional workspace, and at the same time, to simulate prescribed ligament length variation during the spatial flexion task. Prescribed ligament length variations are achieved through an optimization process of the ligament insertion points. This model can be used to improve the multibody kinematic optimization process during gait analysis, and also in the design of rehabilitation devices as well as trajectories to accelerate the recovery of injured ligaments. The model shows potential to predict ligament length variations during different motion tasks, and can serve as a basis to develop complex models for kinetostatic and dynamic analyses without dealing with computationally expensive models.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Alessandro Filippeschi ◽  
Pietro Griffa ◽  
Carlo Alberto Avizzano

Tele-examination based on robotic technologies is a promising solution to solve the current worsening shortage of physicians. Echocardiography is among the examinations that would benefit more from robotic solutions. However, most of the state-of-the-art solutions are based on the development of specific robotic arms, instead of exploiting COTS (commercial-off-the-shelf) arms to reduce costs and make such systems affordable. In this paper, we address this problem by studying the design of an end-effector for tele-echography to be mounted on two popular and low-cost collaborative robots, i.e., the Universal Robot UR5, and the Franka Emika Panda. In the case of the UR5 robot, we investigate the possibility of adding a seventh rotational degree of freedom. The design is obtained by kinematic optimization, in which a manipulability measure is an objective function. The optimization domain includes the position of the patient with regards to the robot base and the pose of the end-effector frame. Constraints include the full coverage of the examination area, the possibility to orient the probe correctly, have the base of the robot far enough from the patient’s head, and a suitable distance from singularities. The results show that adding a degree of freedom improves manipulability by 65% and that adding a custom-designed actuated joint is better than adopting a native seven-degrees-freedom robot.


Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 104
Author(s):  
Jawad Yamine ◽  
Alessio Prini ◽  
Matteo Lavit Nicora ◽  
Tito Dinon ◽  
Hermes Giberti ◽  
...  

The patient population needing physical rehabilitation in the upper extremity is constantly increasing. Robotic devices have the potential to address this problem, however most of the rehabilitation robots are technically advanced and mainly designed for clinical use. This paper presents the development of an affordable device for upper-limb neurorehabilitation designed for home use. The device is based on a 2-DOF five-bar parallel kinematic mechanism. The prototype has been designed so that it can be bound on one side of a table with a clamp. A kinematic optimization was performed on the length of the links of the manipulator in order to provide the optimum kinematic behaviour within the desired workspace. The mechanical structure was developed, and a 3D-printed prototype was assembled. The prototype embeds two single-point load cells to measure the force exchanged with the patient. Rehabilitation-specific control algorithms are described and tested. Finally, an experimental procedure is performed in order to validate the accuracy of the position measurements. The assessment confirms an acceptable level of performance with respect to the requirements of the application under analysis.


Author(s):  
Ann Marie Votta ◽  
Sezen Yagmur Gunay ◽  
Brian Zylich ◽  
Erik Skorina ◽  
Raagini Rameshwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document