passive deformation
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Sijia Liu ◽  
Yingjie Wang ◽  
Zhennan Li ◽  
Miao Jin ◽  
Lei Ren ◽  
...  

Abstract Artificial fish-like robots developed to date often focus on the external morphology of fish and have rarely addressed the contribution of the structure and morphology of biological muscle. However, biological studies have proven that fish utilize the contraction of muscle fibers to drive the protective flexible connective tissue to swim. This paper introduces a pneumatic silicone structure prototype inspired by the red muscle system of fish and applies it to the fish-like robot named Flexi-Tuna. The key innovation is to make the fluid-driven units simulate the red muscle fiber bundles of fish and embed them into a flexible tuna-like matrix. The driving units act as muscle fibers to generate active contraction force, and the flexible matrix as connective tissue to generate passive deformation. Applying alternant pressure to the driving units can produce a bending moment, causing the tail to swing. As a result, the structural design of Flexi-Tuna has excellent bearing capacity compared with the traditional cavity-type and keeps the body smooth. On this basis, a general method is proposed for modeling the fish-like robot based on the independent analysis of the active and passive body, providing a foundation for Flexi-Tuna’s size design. Followed by the robot’s static and underwater dynamic tests, we used finite element static analysis and fluid numerical simulation to compare the results. The experimental results showed that the maximum swing angle of the tuna-like robot reached 20°, and the maximum thrust reached 0.185 N at the optimum frequency of 3.5 Hz. In this study, we designed a unique system that matches the functional level of biological muscles. As a result, we realized the application of fluid-driven artificial muscle to bionic fish and expanded new ideas for the structural design of flexible bionic fish.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yue Wu ◽  
Changchuan Xie ◽  
Yang Meng ◽  
Chao Yang

In recent years, there has been widespread interest in the design of microair vehicles (MAVs) for flapping flight with high-aspect ratio wings due to their high efficiency and energy savings. However, the flexibility of a flapping wing causes the aeroelastic effect, which remains a subject of investigation. Generally, existing research simulates active bending and twisting of flexible wings under the assumption of neglecting flapping inertia. In this research, the kinematic optimization of a bionic wing with passive deformation in forward flight while undergoing flapping and pitching is considered. To this end, a computational aeroelasticity framework, which includes the three-dimensional unsteady vortex lattice method (UVLM) and the Newmark-β method, is constructed for flapping flight. Under the assumption of linear elastic deformation, this tool is capable of simulating attached flows over a thin wing and capturing unsteady effects of wakes. A bionic numerical wing with an aspect ratio of 6.5, chord Reynolds number of 1.9 × 105, and reduced frequency less than 0.1 is investigated in kinematic optimization. The computational aeroelasticity framework is combined with a global optimization algorithm to identify the optimal kinematics that maximize the propulsive efficiency under the minimum average lift constraint. Two types of numerical wings, rigid wing and flexible wing, are considered here to compare the influence of deformation on the aerodynamics of the flapping wing. The results show that the aeroelastic effect, which increases the flapping amplitude, yields a significant improvement in terms of propulsive efficiency. In addition, the optimization algorithm maximizes the thrust efficiency while satisfying the required lift. Moreover, the optimal kinematics of both the rigid wing and the flexible wing reach the maximum flapping angle, which indicates that a larger range of motions is needed for optimal kinetics when loosening the boundary conditions.


2021 ◽  
Vol 28 (4) ◽  
pp. 4-19
Author(s):  
Fengkun Li ◽  
Pengyao Yu ◽  
Qiang Wang ◽  
Guangzhao Li ◽  
Xiangcheng Wu

Abstract Numerical simulations of fluid-structure interaction (FSI) on an elastic foil heaving with constant amplitude in freestream flow are carried out at a low Reynolds number of 20,000. The commercial software STAR-CCM+ is employed to solve the flow field and the large-scale passive deformation of the structure. The results show that introducing a certain degree of flexibility significantly improves the thrust and efficiency of the foil. For each Strouhal number St considered, an optimal flexibility exists for thrust; however, the propulsive efficiency keeps increasing with the increase in flexibility. The visualisation of the vorticity fields elucidates the improvement of the propulsive characteristics by flexibility. Furthermore, the mechanism of thrust generation is discussed by comparing the time-varying thrust coefficient and vortex structure in the wake for both rigid and elastic foils. Finally, in addition to sinusoidal motions, we also consider the effect of non-sinusoidal trajectories defined by flattening parameter S on the propulsive characteristics for both rigid and elastic foils. The non-sinusoidal trajectories defined by S=2 are associated with the maximum thrust, and the highest values of propulsive efficiency are obtained with S=0.5 among the cases considered in this work.


Author(s):  
Shengjie Xiao ◽  
Kai Hu ◽  
Binxiao Huang ◽  
Huichao Deng ◽  
Xilun Ding

AbstractMost insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane, and perform precise hovering flight. Further, most birds can utilize tails and muscles in wings to actively control the flight performance, while insects control their flight with muscles based on wing root along with wing’s passive deformation. Based on the above flight principles of birds and insects, Flapping Wing Micro Air Vehicles (FWMAVs) are classified as either bird-inspired or insect-inspired FWMAVs. In this review, the research achievements on mechanisms of insect-inspired, hoverable FWMAVs over the last ten years (2011–2020) are provided. We also provide the definition, function, research status and development prospect of hoverable FWMAVs. Then discuss it from three aspects: bio-inspiration, motor-driving mechanisms and intelligent actuator-driving mechanisms. Following this, research groups involved in insect-inspired, hoverable FWMAV research and their major achievements are summarized and classified in tables. Problems, trends and challenges about the mechanism are compiled and presented. Finally, this paper presents conclusions about research on mechanical structure, and the future is discussed to enable further research interests.


2021 ◽  
Vol 22 (Supplement_3) ◽  
Author(s):  
D Midgett ◽  
RA Ricardo Avendano ◽  
IM Inga Melvinsdottir ◽  
SU Selen Uman ◽  
SLT Stephanie Thorn ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): National Institute of Health (NIH) Purpose Myocardial infarction (MI) induces acute regional changes in myocardial strain and stiffness in the infarct and the remote areas of the left ventricle (LV), which lead to adverse changes in LV geometry and function. We hypothesize that cineCT imaging could evaluate these biomechanical changes along with the effects of intramyocardial delivery of theranostic hydrogels.  Introduction We present an experimental platform to assess changes in the deformation of the LV myocardium using contrast cineCT (CCT) imaging of the beating porcine heart (active deformation) before and after acute MI and intramyocardial delivery of an imageable theranostic hydrogel. We then assess the acute effects of hydrogel delivery early post-MI on biomechanics (passive deformation) using an ex vivo perfused heart preparation.  Methods Contrast cineCT imaging was performed using 64-slice CT on 5 Yorkshire pigs without MI (n = 3) or with MI (n = 2). MI pigs had serial imaging performed before and 1 hour after acute surgical coronary occlusion to induce anterolateral MI. One MI pig was also imaged 1 hour after intramyocardial injection of a novel imageable theranostic iodinated hydrogel within the MI region. Post euthanasia, excised hearts were flushed with chilled UW cardioplegic solution and mounted on a custom inflation apparatus for cineCT imaging during LV inflation by external pump. LV pressure was cycled between 10 and 60 mmHg at 35 bpm. Dilute iohexol was injected into aortic root and UW perfusate (15 ml, 1 ml/sec). CineCT image series were reconstructed, contrast enhanced, resampled to the LV long axis (Z), and exported as a series of 10 CT volumes covering 0-90% of the cardiac/inflation cycle. Volumes were registered incrementally using nonlinear image registration (BioImageSuite) and the calculated displacement at each time point was exported at a resolution of 1 mm. A custom Matlab program was used to fit the displacement field to local trilinear polynomials and then calculate the displacement gradients and 3D Lagrangian strains. To estimate the accuracy of this approach, cardiac volumes were also numerically deformed using a 10 pixel translation and 5% triaxial stretch. Results We successfully acquired serial in-vivo and ex-vivo 3D CineCT images for assessment of the active and passive LV myocardial deformation and tracked deformation through the full cardiac/inflation cycle (Figure 2). Numerical deformation tests showed average tracking errors of < 0.2 mm (1/4 pixel) in the X,Y,Z directions of the volume. These resulted in Lagrangian strain errors of < 0.47% for the in-plane strains EXX and EYY (radial and circumferential plane) and < 0.5% for EZZ (long axis).  Conclusions We have developed a novel CineCT imaging platform that allows for high resolution in-vivo and ex-vivo measurement of myocardial biomechanics post-MI and following intramyocardial delivery of imageable theranostic hydrogels, which may improve early active and passive biomechanics.


2021 ◽  
Author(s):  
Lan-Jie Huang ◽  
Wen-Long Fu

Abstract Background and Aims In angiosperms, many species disperse their seeds autonomously by rapid movement of the pericarp. The fruits of these species often have long rod- or long plate-shaped pericarps, which are suitable for ejecting seeds during fruit dehiscence by bending or coiling. However, here we show that fruit with a completely different shape can also rely on pericarp movement to disperse seeds explosively, as in Orixa japonica. Methods Fruit morphology was observed by hard tissue sectioning, scanning electron microscopy and micro-computed tomography, and the seed dispersal process was analysed using a high-speed camera. Comparisons were made of the geometric characteristics of pericarps before and after fruit dehiscence, and the mechanical process of pericarp movement was simulated with the aid of the finite element model. Key Results During fruit dehydration, the water drop-shaped endocarp of O. japonica with sandwich structure produced two-way bending deformation and cracking, and its width increased more than three-fold before opening. Meanwhile the same shaped exocarp with uniform structure could only produce small passive deformation under relatively large external forces. The endocarp forced the exocarp to open by hygroscopic movement before seed launching, and the exocarp provided the acceleration for seed launching through a reaction force. Conclusions Two layers of water drop-shaped pericarp in O. japonica form a structure similar to a slingshot, which launches the seed at high speed during fruit dehiscence. The results suggest that plants with explosive seed dispersal appear to have a wide variety of fruit morphology, and through a combination of different external shapes and internal structures, they are able to move rapidly using many sophisticated mechanisms.


2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Adrien Pantet ◽  
Jean-Luc Epard ◽  
Henri Masson

Abstract The Mont Fort nappe, former uppermost subunit of the Grand St-Bernard nappe system, is an independent tectonic unit with specific structural and stratigraphic characteristics (Middle Penninic, NW Italy and SW Switzerland). It consists in a Paleozoic basement, overlain by a thin, discontinuous cover of Triassic-Jurassic metasediments, mainly breccias, called the Evolène Series. The contact of this Series over the Mont Fort basement is debated: stratigraphic or tectonic? We present new observations that support the stratigraphic interpretation and consequently imply that the Evolène Series belongs to the Mont Fort nappe. We moreover show that the Mont Fort nappe was strongly affected by normal faulting during Jurassic. These faults went long unnoticed because Alpine orogenic deformation blurred the record. Alpine strain erased their original obliquity, causing confusion with an Alpine low-angle thrust. These Jurassic faults have been passively deformed during Alpine tectonics, without inversion or any other kind of reactivation. They behaved like passive markers of the Alpine strain. Detailed field observations reveal the link between observed faults and specific breccia accumulations. Areas where the Evolène Series is missing correspond to sectors where the fault scarps were exposed on the bottom of the sea but were too steep to keep the syn- to post-faulting sediments. The Mont Fort nappe thus represents an example of a distal rifted margin. The succession of synsedimentary extensional movements followed by orogenic shortening generated a situation where passively deformed normal faults mimic an orogenic thrust.


2020 ◽  
Vol 104 ◽  
pp. 105944
Author(s):  
Peng Nian ◽  
Bifeng Song ◽  
Jianlin Xuan ◽  
Wenhui Zhou ◽  
Dong Xue

Sign in / Sign up

Export Citation Format

Share Document