micromorphic theory
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2020 ◽  
Vol 10 (24) ◽  
pp. 9142
Author(s):  
Ozgur Aslan ◽  
Emin Bayraktar

This work aims at the unification of the thermodynamically consistent representation of the micromorphic theory and the microdamage approach for the purpose of modeling crack growth and damage regularization in crystalline solids. In contrast to the thermodynamical representation of the microdamage theory, micromorphic contribution to flow resistance is defined in a dual fashion as energetic and dissipative in character, in order to bring certain clarity and consistency to the modeling aspects. The approach is further extended for large deformations and numerically implemented in a commercial finite element software. Specific numerical model problems are presented in order to demonstrate the ability of the approach to regularize anisotropic damage fields for large deformations and eliminate mesh dependency.


2019 ◽  
Vol 231 (4) ◽  
pp. 1253-1284
Author(s):  
Jiaoyan Li ◽  
Kerlin P. Robert ◽  
James D. Lee

2019 ◽  
Vol 25 (2) ◽  
pp. 407-429 ◽  
Author(s):  
Nima Nejadsadeghi ◽  
Anil Misra

For many problems in science and engineering, it is necessary to describe the collective behavior of a very large number of grains. Complexity inherent in granular materials, whether due the variability of grain interactions or grain-scale morphological factors, requires modeling approaches that are both representative and tractable. In these cases, continuum modeling remains the most feasible approach; however, for such models to be representative, they must properly account for the granular nature of the material. The granular micromechanics approach has been shown to offer a way forward for linking the grain-scale behavior to the collective behavior of millions and billions of grains while keeping within the continuum framework. In this paper, an extended granular micromechanics approach is developed that leads to a micromorphic theory of degree n. This extended form aims at capturing the detailed grain-scale kinematics in disordered (mechanically or morphologically) granular media. To this end, additional continuum kinematic measures are introduced and related to the grain-pair relative motions. The need for enriched descriptions is justified through experimental measurements as well as results from simulations using discrete models. Stresses conjugate to the kinematic measures are then defined and related, through equivalence of deformation energy density, to forces conjugate to the measures of grain-pair relative motions. The kinetic energy density description for a continuum material point is also correspondingly enriched, and a variational approach is used to derive the governing equations of motion. By specifying a particular choice for degree n, abridged models of degrees 2 and 1 are derived, which are shown to further simplify to micro-polar or Cosserat-type and second-gradient models of granular materials.


2017 ◽  
Vol 25 (7) ◽  
pp. 1429-1449 ◽  
Author(s):  
Samuel Forest ◽  
Karam Sab

Germain’s general micromorphic theory of order [Formula: see text] is extended to fully non-symmetric higher-order tensor degrees of freedom. An interpretation of the microdeformation kinematic variables as relaxed higher-order gradients of the displacement field is proposed. Dynamical balance laws and hyperelastic constitutive equations are derived within the finite deformation framework. Internal constraints are enforced to recover strain gradient theories of grade [Formula: see text]. An extension to finite deformations of a recently developed stress gradient continuum theory is then presented, together with its relation to the second-order micromorphic model. The linearization of the combination of stress and strain gradient models is then shown to deliver formulations related to Eringen’s and Aifantis’s well-known gradient models involving the Laplacians of stress and strain tensors. Finally, the structures of the dynamical equations are given for strain and stress gradient media, showing fundamental differences in the dynamical behaviour of these two classes of generalized continua.


Sign in / Sign up

Export Citation Format

Share Document