indoor mould
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
pp. 2100252
Author(s):  
Hayley Barnes ◽  
Kirk Jones ◽  
Paul Blanc

Hypersensitivity pneumonitis (HP) is a relatively new construct, first reported in the early 20th century, despite major aetiologic factors (farming, bird husbandry) being part of human activities for millennia. Initial confirmed HP reports include exposure to farming and forestry (1932) and bird exposure (1965), much more recently in time than is often assumed. Later changes in occupational and living practices have led to HP associated with isocyanates, machine coolants, indoor mould, hot tubs, and other exposures. Evolution in our pathological understanding of interstitial lung disease in general, wider computerised tomography (CT) utilisation, and advances in immunology and genomics have shaped our modern conceptualisation of HP. Examining historical accounts of HP and its causative factors not only considers when the first cases were recognised, but also explores why the disease emerged at specific times and places, and may provide further insights relevant to the mechanisms underlying HP and disease prevention.


2021 ◽  
Vol 238 ◽  
pp. 104156
Author(s):  
Sangeeta Roy ◽  
Bodhisattwa Saha ◽  
Swati Gupta Bhattacharya

2020 ◽  
Vol 8 (12) ◽  
pp. 1940
Author(s):  
Maria A. Andersson ◽  
Johanna Salo ◽  
Orsolya Kedves ◽  
László Kredics ◽  
Irina Druzhinina ◽  
...  

The secretion of metabolites in guttation droplets by indoor moulds is not well documented. This study demonstrates the guttation of metabolites by actively growing common indoor moulds. Old and fresh biomasses of indoor isolates of Aspergillus versicolor, Chaetomium globosum, Penicillium expansum, Trichoderma atroviride, T. trixiae, Rhizopus sp. and Stachybotrys sp. were compared. Metabolic activity indicated by viability staining and guttation of liquid droplets detected in young (<3 weeks old) biomass were absent in old (>6 months old) cultures consisting of dehydrated hyphae and dormant conidia. Fresh (<3 weeks old) biomasses were toxic more than 10 times towards mammalian cell lines (PK-15 and MNA) compared to the old dormant, dry biomasses, when calculated per biomass wet weight and per conidial particle. Surfactant activity was emitted in exudates from fresh biomass of T. atroviride, Rhizopus sp. and Stachybotrys sp. Surfactant activity was also provoked by fresh conidia from T. atroviride and Stachybotrys sp. strains. Water repealing substances were emitted by cultures of P. expansum, T. atroviride and C. globosum strains. The metabolic state of the indoor fungal growth may influence emission of liquid soluble bioreactive metabolites into the indoor air.


Author(s):  
Bin Su ◽  
Lian Wu

The New Zealand Ministry of Health reported that respiratory disease affects 700,000 people, annually costs New Zealand NZ$7.05 billion, and is the third-highest cause of death. The hospitalisation rate for asthma of Māori communities is 2.0 higher than that of other ethnic groups, and hospitalisation rates for deprived homes are 2.3 times higher than those of the least deprived homes. Based on physical data and evidence, which were drawn from a mixed methodology that includes field studies of the indoor microclimate, dust-mite allergens, mould growth, and occupants’ Respiratory Health Survey of a number of sample houses of Māori communities in Minginui, Te Whaiti, Murupara, and Rotorua of New Zealand, the study identifies unhealthy indoor thermal conditions, thresholds or ranges of indoor micro-climate related to different levels of dust-mite allergen and mould growth, the most common type of indoor mould, and correlations between dust-mite and mould and correlations. The study not only identified that the poor health of occupants is closely related to their inadequate living conditions, but also identifies the threshold of indoor micro-climates to maintain indoor allergens at the acceptable level, which can be used as a guideline to maintain or improve indoor health conditions for future housing development or retrofitted old housing.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Yasemin Didem Aktas ◽  
Morten Reeslev ◽  
Héctor Altamirano ◽  
Neil May ◽  
Dina F. D’Ayala

This paper reports results obtained from a surface (both visually clean and dirty/dusty surfaces) and active (aggressive or activated) air testing scheme on 140 residential rooms in England, without visible water damage or mould growth, along with a few rooms with visible mould growth/water damage tested for comparison purposes. The aim was to establish normal background levels of mould in non-water-damaged interiors to benchmark a ‘normal’ indoor environment, and in turn when there is a need for further investigation, and, possibly, remediation. Air and surface mould was quantified based on the activity of β-N-acetylhexosaminidase (EC 3.2.1.52; NAHA). The obtained readings showed a log-normal distribution. Ninety-eight percent of the samples obtained from visually clean surfaces were equal to or less than 25 relative fluorescence units (RFU), which is suggested to be the higher bound for the range which can be used as a success criterion for surface cleaning/remediation. Of samples obtained from visually dirty/dusty surfaces, around 98% were below 450 RFU, which is suggested to define the lower-bound for abnormally high levels of mould, rare even on dirty/dusty surfaces. Similarly, around 98% of the air samples were found to have 1700 RFU or below. Values above 1700 RFU are therefore deemed unlikely in a non-problem indoor environment and can be indicative of a possible problem inducing mould growth. The samples with values below 1700 were further divided into three proposed sub-categories. Finally, the obtained RFU values and the suggested benchmarks were compared to those obtained from 17 non-residential indoor environments tested previously in Copenhagen, and the benchmarks that are currently used in Danish national standards, and they were both found to be highly congruent, suggesting that local climate regimes and room functions might not be as influential on indoor mould levels as commonly thought, or that the nuances between England and Denmark in terms of these factors are not strong enough to lead to sizable changes in the typical indoor mould levels in these countries’ building stocks.


2020 ◽  
Author(s):  
Yasemin Didem Aktas ◽  
Yasemin Didem Aktas ◽  
Yasemin Didem Aktas ◽  
Yasemin Didem Aktas ◽  
Yasemin Didem Aktas ◽  
...  

This paper reports results obtained from a surface (both visually clean and dirty/dusty surfaces) and active (aggressive or activated) air testing scheme on 140 residential rooms in England, without visible water damage or mould growth, along with a few rooms with visible mould growth/water damage tested for comparison purposes. The aim is to establish normal background levels of mould in non-water-damaged interiors to benchmark a normal indoor environment, and in turn when there is a need for further investigation, and, possibly, remediation. Air and surface mould was quantified based on the activity of β-N-acetylhexosaminidase (EC 3.2.1.52; NAHA). The obtained readings showed a log-normal distribution. 98% of the samples obtained from visually clean surfaces were equal to or less than 25 relative fluorescence units (RFU), which is suggested to be the higher bound for the range which can be used as a success criterion for surface cleaning/remediation in non-problem buildings. Of samples obtained from visually dirty/dusty surfaces, around 98% were below 450 RFU, which is suggested to define the lower-bound for abnormally high levels of mould, rare even on dirty/dusty surfaces. Similarly, around 98% of the air samples were found to have 1700 RFU or below. Values above 1700 RFU are therefore deemed unlikely in a non-problem indoor environment and can be indicative of a possible problem inducing mould growth. The samples with values below 1700 were further divided into three proposed sub-categories. Finally, the obtained RFU values and the suggested benchmarks were compared to those obtained from 17 non-residential indoor environments in Copenhagen tested previously, and the benchmarks that are currently used in Danish national standards, and they were both found to be highly congruent, suggesting that local climate regimes and room functions might not be as influential on indoor mould levels as commonly thought, or that the nuances between England and Denmark in terms of these factors are not strong enough to lead to sizable changes in the typical indoor mould levels in these countries.


2019 ◽  
Vol 23 (11) ◽  
pp. 1171-1177 ◽  
Author(s):  
F. L. Lim ◽  
Z. Hashim ◽  
L. T. L. Than ◽  
S. Md Said ◽  
J. H. Hashim ◽  
...  

OBJECTIVE: To examine the associations between endotoxin and (1,3)-β-glucan concentrations in office dust and respiratory symptoms and airway inflammation among 695 office workers in Malaysia.METHODS: Health data were collected using a questionnaire, sensitisation testing and measurement of fractional exhaled nitric oxide (FeNO). Indoor temperature, relative air humidity (RH) and carbon dioxide (CO2) were measured in the offices and settled dust was vacuumed and analysed for endotoxin and (1,3)-β-glucan concentrations. Associations were analysed by two level multiple logistic regression.RESULTS: Overall, 9.6% of the workers had doctor-diagnosed asthma, 15.5% had wheeze, 18.4% had daytime attacks of breathlessness and 25.8% had elevated FeNO (≥25 ppb). The median levels in office dust were 11.3 EU/mg endotoxin and 62.9 ng/g (1,3)-β-glucan. After adjusting for personal and home environment factors, endotoxin concentration in dust was associated with wheeze (P = 0.02) and rhinoconjunctivitis (P = 0.007). The amount of surface dust (P = 0.04) and (1,3)-β-glucan concentration dust (P = 0.03) were associated with elevated FeNO.CONCLUSION: Endotoxin in office dust could be a risk factor for wheeze and rhinoconjunctivitis among office workers in mechanically ventilated offices in a tropical country. The amount of dust and (1,3)-β-glucan (a marker of indoor mould exposure) were associated with Th2 driven airway inflammation.


2019 ◽  
Author(s):  
Yasemin Didem Aktas ◽  
Morten Reeslev ◽  
Hector Altamirano ◽  
Neil May ◽  
Dina D'Ayala

This paper reports results obtained from a surface (both visually clean and dirty/dusty surfaces) and active (aggressive) air testing scheme on 140 residential rooms in England, without visible water damage or mould growth, along with a few rooms with visible mould growth/water damage tested for comparison purposes, with the aim of providing background levels of mould in non-water-damaged interiors to benchmark a normal indoor environment, and in turn when there is a need for further investigation, and, possibly, remediation. Air and surface mould was quantified based on the activity of β-N-acetylhexosaminidase (EC 3.2.1.52; NAHA). The obtained readings showed a log-normal distribution. 98% of the samples obtained from visually clean surfaces were equal to or less than 25 relative fluorescence units (RFU), which is suggested to be the higher bound for the range which can be used as a success criterion for surface cleaning/remediation in non-problem buildings. Of samples obtained from visually dirty/dusty surfaces, around 98% were below 450 RFU, which is suggested to define the lower-bound for abnormally high levels of mould, rare even on dirty/dusty surfaces. Similarly, around 98% of the air samples were found to have 1700 RFU or below. Values above 1700 RFU are therefore unlikely in a non-problem indoor environment and can be indicative of a possible problem inducing mould growth. The samples with values below 1700 were further divided into three proposed sub-categories. Finally, these values were compared to those obtained in Denmark in a similar study and are currently used in national standards, and they were found highly congruent, suggesting that local climate regimes and room functions might not be as influential on indoor mould levels, or that the nuances between UK and Denmark in terms of these factors are not strong enough to lead to sizable changes in the typical indoor mould levels in these countries.


Sign in / Sign up

Export Citation Format

Share Document