water damage
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 33 (12) ◽  
pp. 04021337
Author(s):  
Muna Al-Kafaji ◽  
Shakir Al-Busaltan ◽  
Hussein A. Ewadh
Keyword(s):  

2021 ◽  
Vol 13 (23) ◽  
pp. 13284
Author(s):  
Cansu İskender ◽  
Erol İskender ◽  
Atakan Aksoy ◽  
Celaleddin Ensar Şengül

In this study, the use of glass waste as aggregate in asphalt mixtures was investigated. Maximum glass aggregate size options of 0.075, 2.00, 4.75 and 9.5 mm. were selected. Conventional bitumen, nanoclay-modified bitumen and hydrated lime-modified bitumen were used. Dense graded asphalt mixtures were designed according to the Marshall method. Mixtures were evaluated for low-temperature cracking, resistance to water damage, fatigue, and permanent deformation behavior with repeated creep, indirect tensile strength, indirect tensile fatigue, modified Lottman and Hamburg wheel tracking tests. Increasing glass aggregate size reduced the water damage resistance of asphalt mixtures because of the smooth surface of the glass particles and nanoclay and hydrated lime modification improved the mechanical properties of the asphalt mixtures. Using 2.00 mm sized maximum glass aggregate showed relatively less water damage and deformation properties due to higher internal friction which is due to the greater angularity of the glass particles. In addition, there was a significant correlation between repeated creep test, modified Lottman methods and Hamburg Wheel tracking test from the viewpoint of deformation and water damage assessments.


Author(s):  
Renjie Wu ◽  
Zheng Li ◽  
Tao Hu ◽  
Wengang Zhang ◽  
Yangjun Xiao ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Jie Yang ◽  
Hui Li ◽  
John Harvey ◽  
Bing Yang ◽  
Saifullah Mahmud ◽  
...  

Abstract Porous polyurethane concrete (PPUC) is a novel material for permeable pavements and is considered as an alternative to porous asphalt or porous cement concrete. However, studies of the mechanical properties of PPUC are still insufficient. In this study, the comprehensive mechanical properties and water stability of PPUC with different gradations and polyurethane dosages were investigated, and its water damage mechanism was preliminarily explored. The results show that the flexural strength and Marshall stability of PPUC can more easily reach the index in the standards of porous cement concrete or porous asphalt, while the compressive strength and abrasion resistance are the weak points of its mechanical properties and need to be further optimized. The mechanical properties and water stability of PPUC were effectively improved by increasing the polyurethane dosage and using continuously graded aggregates. PPUC is more susceptible to water damage because water reacts with the residual isocyanate groups within the polyurethane film to generate carbon dioxide gas, which reduces the cohesion and adhesion performance of polyurethane film. This study provides a comprehensive understanding of the mechanical properties of PPUC and an initial insight into the mechanism of water damage.


Author(s):  
Jens Christian Wahl ◽  
Fredrik Lohne Aanes ◽  
Kjersti Aas ◽  
Sindre Froyn ◽  
Daniel Piacek

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Minghua Wei ◽  
Chao Yang ◽  
Jun Xie ◽  
Shan Liu ◽  
Fusong Wang ◽  
...  

Previous studies have indicated that steel slag can be used as a substitute for natural aggregates in asphalt mixture, while little attention has been paid to systematic investigation of the influences of various external environmental factors on deformation resistance of steel slag asphalt mixture. In order to understand the service behavior of steel slag asphalt mixture, its permanent deformation under different condition was investigated based on an indoor simulation test. The chemical composition, microscopic structure, surface texture, and volume stability of steel slag were firstly characterized. The uniaxial repeated loading test and standard wheel-tracking test were applied to evaluate the effect of temperature, stress levels, and water damage on the permanent deformation of AC-16 and AC-20 steel slag asphalt mixtures. The results indicate that a higher content of alkaline oxide and high-grade texture index existing in steel slag contribute to its strong absorptivity and adhesion of asphalt. The steel slag demonstrates fine volume stability due to its lower free-CaO (f-CaO) content, autoclave chalked ratio, and immersion expansion ratio. The permanent deformation of steel slag asphalt mixtures increases rapidly under higher stress and temperatures in contrast to lower increment at lower stress and temperatures. Asphalt mixtures at higher stress and higher temperatures and water condition exhibit larger rutting deformation and inferior rutting resistance. AC-16 steel slag asphalt mixture has superior resistance to permanent deformation than AC-20 asphalt mixture. Rutting factors show different degrees of impact in a decreasing order of temperature, water damage, and stress levels. The findings have significant implications for providing a theoretical basis for reusing steel slag in pavement construction and facilitating engineering application of steel slag asphalt mixture.


Sign in / Sign up

Export Citation Format

Share Document